Clinical Syndromes and Genetic Screening Strategies of Pheochromocytoma and Paraganglioma

Main Article Content

Peihua Liu
Minghao Li
Xiao Guan
Anze Yu
Qiao Xiao
Cikui Wang
Yixi Hu
Feizhou Zhu
Hongling Yin
Xiaoping Yi
Longfei Liu

Keywords

multiple endocrine neoplasia, von Hippel–Lindau syndrome, neurofibromatosis-1, pheochromocytoma, paraganglioma

Abstract

Pheochromocytomas (PCCs) are rare neuroendocrine tumors that originate from chromaffin cells of the adrenal medulla, and paragangliomas (PGLs) are extra-adrenal pheochromocytomas. These can be mainly found in clinical syndromes including multiple endocrine neoplasia (MEN), von Hippel–Lindau (VHL) syndrome, neurofibromatosis-1 (NF-1) and familial paraganglioma (FPGL). PCCs and PGLs are thought to have the highest degree of heritability among human tumors, and it has been estimated that 60% of the patients have genetic abnormalities. This review provides an overview of the clinical syndrome and the genetic screening strategies of PCCs and PGLs. Comprehensive screening principles and strategies, along with specific screening based on clinical symptoms, biochemical tests and immunohistochemistry, are discussed.

Abstract 2460 | PDF Downloads 1162 HTML Downloads 1522 XML Downloads 604

References

1. Bjorklund P, Pacak K, Crona J. Precision medicine in pheo-chromocytoma and paraganglioma: Current and future concepts. J Int Med. 2016;280(6):559–73. https://doi.org/10.1111/joim.12507
2. Pai R, Manipadam MT, Singh P, Ebenazer A, Samuel P, Rajaratnam S. Usefulness of Succinate dehydrogenase B (SDHB) immunohistochemistry in guiding mutational screening among patients with pheochromocytoma-paraganglioma syndromes. APMIS. 2014;122(11):1130–5. https://doi.org/10.1111/apm.12269
3. Turchini J, Cheung VKY, Tischler AS, De Krijger RR, Gill AJ. Pathology and genetics of phaeochromocytoma and paraganglioma. Histopathology. 2018;72(1):97–105. https://doi.org/10.1111/his.13402
4. Dahia PL. Pheochromocytoma and paraganglioma pathogenesis: Learning from genetic heterogeneity. Nat Rev Canc. 2014;14(2):108–19. https://doi.org/10.1038/nrc3648
5. Favier J, Amar L, Gimenez-Roqueplo AP. Paraganglioma and phaeochromocytoma: From genetics to personalized medicine. Nat Rev Endocrinol. 2015;11(2):101–11. https://doi.org/10.1038/nrendo.2014.188
6. Pillai S, Gopalan V, Smith RA, Lam AK. Updates on the genetics and the clinical impacts on phaeochromocytoma and paraganglioma in the new era. Crit Rev Oncol Hematol. 2016;100:190–208. https://doi.org/10.1016/j.critrevonc.2016.01.022
7. Pillai S, Gopalan V, Lam AK. Review of sequencing platforms and their applications in phaeochromocytoma and paragangliomas. Crit Rev Oncol Hematol. 2017;116:58–67. https://doi.org/10.1016/j.critrevonc.2017.05.005
8. Lebeault M, Pinson S, Guillaud-Bataille M, Gimenez-Roqueplo AP, Carrie A, Barbu V, et al. Nationwide French study of RET variants detected from 2003 to 2013 suggests a possible influence of polymorphisms as modifiers. Thyroid. 2017;27(12):1511–22. https://doi.org/10.1089/thy.2016.0399
9. Qi XP, Chen XL, Ma JM, Du ZF, Fei J, Yang CP, et al. RET proto-oncogene genetic screening of families with multiple endocrine neoplasia type 2 optimizes diagnostic and clinical management in China.Thyroid. 2012;22(12):1257–65. https://doi.org/10.1089/thy.2012.0134
10. Plaza-Menacho I. Structure and function of RET in multiple endocrine neoplasia type 2. Endocr Relat Canc. 2018;25(2):T79–90. https://doi.org/10.1530/ERC-17-0354
11. Tang KL, Lin Y, Li LM. Diagnosis and surgical treatment of multiple endocrine neoplasia type 2A. World J Surg Oncol. 2014;12:8. https://doi.org/10.1186/1477-7819-12-8
12. Castinetti F, Maia AL, Peczkowska M, Barontini M, Hasse-Lazar K, Links TP, et al. The penetrance of MEN2 pheochromocytoma is not only determined by RET mutations. Endocr Relat Canc. 2017;24(8):L63–7. https://doi.org/10.1530/ERC-17-0189
13. Wells SA, Jr. Advances in the management of MEN2: From improved surgical and medical treatment to novel kinase inhibitors. Endocr Relat Canc. 2018;25(2):T1–13. https://doi.org/10.1530/ERC-17-0325
14. Tsirlin A, Oo Y, Sharma R, Kansara A, Gliwa A, Banerji MA. Pheochromocytoma: A review. Maturitas. 2014;77(3):229–38. https://doi.org/10.1016/j.maturitas.2013.12.009
15. Manoharan J, Raue F, Lopez CL, Albers MB, Bollmann C, Fendrich V, et al. Is routine screening of young asymptomatic MEN1 patients necessary? World J Surg. 2017;41(8):2026–32. https://doi.org/10.1007/s00268-017-3992-9
16. Falchetti A, Marini F, Luzi E, Tonelli F, Brandi ML. Multiple endocrine neoplasms. Best Pract Res Clin Rheumatol. 2008;22(1):149–63. https://doi.org/10.1016/j.berh.2007.11.010
17. Bouhamdani N, Joy A, Barnett D, Cormier K, Leger D, Chute IC, et al. Quantitative proteomics to study a small molecule targeting the loss of von Hippel-Lindau in renal cell carcinomas. Int J Canc. 2017;141(4):778–90. https://doi.org/10.1002/ijc.30774
18. Butz JJ, Yan Q, McKenzie TJ, Weingarten TN, Cavalcante AN, Bancos I, et al. Perioperative outcomes of syndromic paraganglioma and pheochromocytoma resection in patients with von Hippel-Lindau disease, multiple endocrine neoplasia type 2, or neurofibromatosis type 1. Surgery. 2017;162(6):1259–69. https://doi.org/10.1016/j.surg.2017.08.002
19. Santos P, Pimenta T, Taveira-Gomes A. Hereditary pheochro-mocytoma. Int J Surg Pathol. 2014;22(5):393–400. https://doi.org/10.1177/1066896914537683
20. Crespigio J, Berbel LCL, Dias MA, Berbel RF, Pereira SS, Pignatelli D, et al. Von Hippel-Lindau disease: A single gene, several hereditary tumors. J Endocrinol Investig. 2018;41(1):21–31. https://doi.org/10.1007/s40618-017-0683-1
21. Binderup MLM. von Hippel-Lindau disease: Diagnosis and factors influencing disease outcome. Danish Med J. 2018;65(3):1–29.
22. Gossage L, Eisen T, Maher ER. VHL, the story of a tumour suppressor gene. Nat Rev Canc. 2015;15(1):55–64. https://doi.org/10.1038/nrc3844
23. Nordstrom-O'Brien M, van der Luijt RB, van Rooijen E, van den Ouweland AM, Majoor-Krakauer DF, Lolkema MP, et al. Genetic analysis of von Hippel-Lindau disease. Hum Mutat. 2010;31(5):521–37. https://doi.org/10.1002/humu.21219
24. Radtke HB, Sebold CD, Allison C, Haidle JL, Schneider G. Neurofibromatosis type 1 in genetic counseling practice: Recommendations of the National Society of Genetic Counselors. J Genet Counsel. 2007;16(4):387–407. https://doi.org/10.1007/s10897-007-9101-8
25. Hes FJ, Hoppener JW, Lips CJ. Clinical review 155: Pheochromocytoma in Von Hippel-Lindau disease. J Clin Endo-crinol Metabol. 2003;88(3):969–74. https://doi.org/10.1210/jc.2002-021466
26. Rustin P, Rotig A. Inborn errors of complex II--unusual human mitochondrial diseases. Biochim Biophys Acta. 2002;1553(1–2):117–22. https://doi.org/10.1016/S0005-2728(01)00228-6
27. Amar L, Baudin E, Burnichon N, Peyrard S, Silvera S, Bertherat J, et al. Succinate dehydrogenase B gene mutations predict survival in patients with malignant pheochromocytomas or paragangliomas. J Clin Endocrinol Metabol. 2007;92(10):3822–8. https://doi.org/10.1210/jc.2007-0709
28. Piccini V, Rapizzi E, Bacca A, Di Trapani G, Pulli R, Giache V, et al. Head and neck paragangliomas: Genetic spectrum and clinical variability in 79 consecutive patients. Endocr Relat Canc. 2012;19(2):149–55. https://doi.org/10.1530/ERC-11-0369
29. Astuti D, Douglas F, Lennard TW, Aligianis IA, Woodward ER, Evans DG, et al. Germline SDHD mutation in familial phaeochromocytoma. Lancet. 2001;357(9263):1181–2. https://doi.org/10.1016/S0140-6736(00)04378-6
30. Hao HX, Khalimonchuk O, Schraders M, Dephoure N, Bay-ley JP, Kunst H, et al. SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science. 2009;325(5944):1139–42. https://doi.org/10.1126/science.1175689
31. Kunst HP, Rutten MH, de Monnink JP, Hoefsloot LH, Timmers HJ, Marres HA, et al. SDHAF2 (PGL2-SDH5) and hereditary head and neck paraganglioma. Clin Canc Res. 2011;17(2):247–54. https://doi.org/10.1158/1078-0432.CCR-10-0420
32. Schiavi F, Boedeker CC, Bausch B, Peczkowska M, Gomez CF, Strassburg T, et al. Predictors and prevalence of paraganglioma syndrome associated with mutations of the SDHC gene. JAMA. 2005;294(16):2057–63. https://doi.org/10.1001/jama.294.16.2057
33. Jafri M, Maher ER. The genetics of phaeochromocytoma: Using clinical features to guide genetic testing. Eur J Endocrinol. 2012;166(2):151–8. https://doi.org/10.1530/EJE-11-0497
34. Neumann HP, Pawlu C, Peczkowska M, Bausch B, McWhin-ney SR, Muresan M, et al. Distinct clinical features of paraganglioma syndromes associated with SDHB and SDHD gene mutations. JAMA. 2004;292(8):943–51. https://doi.org/10.1001/jama.292.8.943
35. Gimenez-Roqueplo AP, Dahia PL, Robledo M. An update on the genetics of paraganglioma, pheochromocytoma, and associated hereditary syndromes. Horm Metab Res. 2012;44(5):328–33. https://doi.org/10.1055/s-0031-1301302
36. Ricketts CJ, Forman JR, Rattenberry E, Bradshaw N, Lalloo F, Izatt L, et al. Tumor risks and genotype-phenotype-proteotype analysis in 358 patients with germline mutations in SDHB and SDHD. Hum Mutat. 2010;31(1):41–51. https://doi.org/10.1002/humu.21136
37. Horvath R, Abicht A, Holinski-Feder E, Laner A, Gempel K, Prokisch H, et al. Leigh syndrome caused by mutations in the flavoprotein (Fp) subunit of succinate dehydrogenase (SDHA). J Neurol Neurosurg Psychiatr. 2006;77(1):74–6. https://doi.org/10.1136/jnnp.2005.067041
38. Parfait B, Chretien D, Rotig A, Marsac C, Munnich A, Rustin P. Compound heterozygous mutations in the flavoprotein gene of the respiratory chain complex II in a patient with Leigh syndrome. Hum Genet. 2000;106(2):236–43. https://doi.org/10.1007/s004390051033
39. Mercado-Asis LB, Wolf KI, Jochmanova I, Taieb D. Pheochromocytoma: A genetic and diagnostic update. Endocrine Pract. 2018;24(1):78–90. https://doi.org/10.4158/EP-2017-0057
40. Welander J, Soderkvist P, Gimm O. Genetics and clinical characteristics of hereditary pheochromocytomas and paragangliomas. Endocr Relat Canc. 2011;18(6): R253–76. https://doi.org/10.1530/ERC-11-0170
41. Fishbein L, Merrill S, Fraker DL, Cohen DL, Nathanson KL. Inherited mutations in pheochromocytoma and paraganglioma: Why all patients should be offered genetic testing. Ann Surg Oncol. 2013;20(5):1444–50. https://doi.org/10.1245/s10434-013-2942-5
42. Brito JP, Asi N, Bancos I, Gionfriddo MR, Zeballos-Palacios CL, Leppin AL, et al. Testing for germline mutations in sporadic pheochromocytoma/paraganglioma: A systematic review. Clin Endocrinol. 2015;82(3):338–45. https://doi.org/10.1111/cen.12530
43. van El CG, Cornel MC, Borry P, Hastings RJ, Fellmann F, Hodgson SV, et al. Whole-genome sequencing in health care: Recommendations of the European Society of Human Genetics. Eur J Hum Genet. 2013;21(6):580–4.
44. de Koning TJ, Jongbloed JD, Sikkema-Raddatz B, Sinke RJ. Targeted next-generation sequencing panels for monogenetic disorders in clinical diagnostics: The opportunities and challenges. Expert Rev Mol Diagn. 2015;15(1):61–70. https://doi.org/10.1586/14737159.2015.976555
45. Toledo RA, Qin Y, Cheng ZM, Gao Q, Iwata S, Silva GM, et al. Recurrent mutations of chromatin-remodeling genes and kinase receptors in pheochromocytomas and paragangliomas. Clin Canc Res. 2016;22(9):2301–10. https://doi.org/10.1158/1078-0432.CCR-15-1841
46. Toledo RA, Burnichon N, Cascon A, Benn DE, Bayley JP, Welander J, et al. Consensus statement on next-generation-sequencing-based diagnostic testing of hereditary phaeochromocytomas and paragangliomas. Nat Rev Endocrinol. 2017;13(4):233–47. https://doi.org/10.1038/nrendo.2016.185
47. Leary RJ, Sausen M, Kinde I, Papadopoulos N, Carpten JD, Craig D, et al. Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing. Science Translat Med. 2012;4(162):162ra54. https://doi.org/10.1126/scitranslmed.3004742
48. Mardis ER. Sequencing the AML genome, transcriptome, and epigenome. Seminars in hematology. 2014;51(4):250–8. https://doi.org/10.1053/j.seminhematol.2014.08.003
49. Bainbridge MN, Wang M, Burgess DL, Kovar C, Rodesch MJ, D'Ascenzo M, et al. Whole-exome capture in solution with 3 Gbp of data. Genome Biol. 2010;11(6): R62. https://doi.org/10.1186/gb-2010-11-6-r62
50. Welander J, Andreasson A, Juhlin CC, Wiseman RW, Back-dahl M, Hoog A, et al. Rare germline mutations identified by targeted next-generation sequencing of susceptibility genes in pheochromocytoma and paraganglioma. J Clin Endo-crinol Metabol. 2014;99(7): E1352–60. https://doi.org/10.1210/jc.2013-4375
51. Sikkema-Raddatz B, Johansson LF, de Boer EN, Almomani R, Boven LG, van den Berg MP, et al. Targeted next-generation sequencing can replace Sanger sequencing in clinical diagnostics. Hum Mutat. 2013;34(7):1035–42. https://doi.org/10.1002/humu.22332
52. Neveling K, Feenstra I, Gilissen C, Hoefsloot LH, Kamsteeg EJ, Mensenkamp AR, et al. A post-hoc comparison of the utility of sanger sequencing and exome sequencing for the diagnosis of heterogeneous diseases. Hum Mutat. 2013;34(12):1721–6.
53. Rattenberry E, Vialard L, Yeung A, Bair H, McKay K, Jafri M, et al. A comprehensive next generation sequencing-based genetic testing strategy to improve diagnosis of inherited pheochromocytoma and paraganglioma. J Clin Endocrinol Metabol. 2013;98(7): E1248–56. https://doi.org/10.1210/jc.2013-1319
54. Lalloo F. Diagnosis and management of hereditary phaeochromocytoma and paraganglioma. Recent Results Cancer Res. 2016;205:105–24. https://doi.org/10.1007/978-3-319-29998-3_7
55. Yeh IT, Lenci RE, Qin Y, Buddavarapu K, Ligon AH, Leteurtre E, et al. A germline mutation of the KIF1B beta gene on 1p36 in a family with neural and nonneural tumors. Hum Genet. 2008;124(3):279–85. https://doi.org/10.1007/s00439-008-0553-1
56. Linnoila RI, Keiser HR, Steinberg SM, Lack EE. Histopathology of benign versus malignant sympathoadrenal paragangliomas: Clinicopathologic study of 120 cases including unusual histologic features. Hum Pathol. 1990;21(11):1168–80. https://doi.org/10.1016/0046-8177(90)90155-X
57. Tischler AS. Pheochromocytoma and extra-adrenal paraganglioma: Updates. Arch Pathol Lab Med. 2008;132(8):1272–84.
58. O'Riordain DS, Young WF, Jr., Grant CS, Carney JA, van Heerden JA. Clinical spectrum and outcome of functional extra adrenal paraganglioma. World J Surg. 1996;20(7):916–21; discussion 22. https://doi.org/10.1007/s002689900139
59. Amar L, Bertherat J, Baudin E, Ajzenberg C, Bressac-de Pail-lerets B, Chabre O, et al. Genetic testing in pheochromocytoma or functional paraganglioma. J Clin Oncol. 2005;23(34):8812–8. https://doi.org/10.1200/JCO.2005.03.1484
60. King KS, Prodanov T, Kantorovich V, Fojo T, Hewitt JK, Zacharin M, et al. Metastatic pheochromocytoma/paraganglioma related to primary tumor development in childhood or adolescence: Significant link to SDHB mutations. J Clin Oncol. 2011;29(31):4137–42. https://doi.org/10.1200/JCO.2011.34.6353
61. Castro-Vega LJ, Buffet A, De Cubas AA, Cascon A, Menara M, Khalifa E, et al. Germline mutations in FH confer predisposition to malignant pheochromocytomas and paragangliomas. Hum Mol Genet. 2014;23(9):2440–6. https://doi.org/10.1093/hmg/ddt639
62. Schussheim DH, Skarulis MC, Agarwal SK, Simonds WF, Burns AL, Spiegel AM, et al. Multiple endocrine neoplasia type 1: New clinical and basic findings. J Trends Endocrinol Metabol. 2001;12(4):173–8. https://doi.org/10.1016/S1043-2760(00)00372-6
63. Juhlin CC, Stenman A, Haglund F, Clark VE, Brown TC, Baranoski J, et al. Whole-exome sequencing defines the mutational landscape of pheochromocytoma and identifies KMT2D as a recurrently mutated gene. J Gene Chromosome Canc. 2015;54(9):542-54. https://doi.org/10.1002/gcc.22267
64. Gupta G, Pacak K. Precision medicine: An update on genotype/biochemical phenotype relationships in pheochromocytoma/paraganglioma patients. Endocr Pract. 2017;23(6):690–704. https://doi.org/10.4158/EP161718.RA
65. Papathomas TG, Oudijk L, Persu A, Gill AJ, van Nederveen F, Tischler AS, et al. SDHB/SDHA immunohistochemistry in pheochromocytomas and paragangliomas: A multicenter interobserver variation analysis using virtual microscopy: A Multinational Study of the European Network for the Study of Adrenal Tumors (ENS@T). Modern Pathol. 2015;28(6):807–21. https://doi.org/10.1038/modpathol.2015.41
66. Stenman A, Svahn F, Welander J, Gustavson B, Soderkvist P, Gimm O, et al. Immunohistochemical NF1 analysis does not predict NF1 gene mutation status in pheochromocytoma. Endocrine Pathol. 2015;26(1):9–14. https://doi.org/10.1007/s12022-014-9348-1
67. Menara M, Oudijk L, Badoual C, Bertherat J, Lepoutre- Lussey C, Amar L, et al. SDHD immunohistochemistry: A new tool to validate SDHx mutations in pheochromocytoma/paraganglioma. J Clin Endocrinol Metabol. 2015;100(2): E287–91. https://doi.org/10.1210/jc.2014-1870
68. Korpershoek E, Favier J, Gaal J, Burnichon N, van Gessel B, Oudijk L, et al. SDHA immunohistochemistry detects germline SDHA gene mutations in apparently sporadic paragangliomas and pheochromocytomas. J Clin Endocrinol Metabol. 2011;96(9): E1472–6. https://doi.org/10.1210/jc.2011-1043
69. Udager AM, Magers MJ, Goerke DM, Vinco ML, Siddiqui J, Cao X, et al. The utility of SDHB and FH immunohistochemistry in patients evaluated for hereditary paraganglioma-pheochromocytoma syndromes. Hum Pathol. 2018;71:47–54. https://doi.org/10.1016/j.humpath.2017.10.013