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Abstract

The prevalence of papillary renal cell carcinomas (PRCCs) is estimated to be between 10% and 15%. At present, there is no effective therapeutic 
approach available for patients with advanced PRCCs. The molecular biomarkers associated with PRCC diagnoses have been rarely studied com-
pared to renal clear cell carcinomas; therefore, the necessity for the identification of novel molecular biomarkers to aid in the early identification 
of this disease. Bioinformatics and artificial intelligence technologies have become increasingly important in the search for diagnostic biomarkers 
for early cancer detection. In this study, three genes—BCL11A, NTN5, and OGN—were identified as diagnostic biomarkers using the Cancer 
Genome Atlas (TCGA) database and deep learning techniques. To identify the differential expression genes (DEGs), ribonucleic acid (RNA) 
expression profiles of PRCC patients were analyzed using a machine learning approach. A number of molecular pathways and coexpressions of 
DEGs have been analyzed and a correlation between DEGs and clinical data has been determined. Diagnostic markers were then determined via 
machine learning analysis. The 10 genes selected with the highest variable importance value (more than 0.9) were further investigated, with six 
upregulated (BCL11A, NTN5, SEL1L3, SKA3, TAPBP, SEMA6A) and four downregulated (OGN, ADCY4, SMOC2, CCL23). A combined 
receiver operating characteristic (ROC) curve analysis revealed that the BCL11A-NTN5-OGN genes, which have specificity and sensitivity val-
ues of 0.968 and 0.901, respectively, can be used as a diagnostic biomarker for PRCC. In general, the genes introduced in this study may be used 
as diagnostic biomarkers for the early diagnosis of PRCC, thus providing the possibility of early treatment and preventing the progression of the 
disease.

Keywords: BCL11A; biomarker; diagnosis; machine learning; NTN5; OGN; PRCC

Received: 21 August 2024; Accepted after revision: 15 January 2025; Published: 28 February 2025

Author for correspondence: Elham Nazari, Department of Health Information Technology and Management, School of Allied Medical Sciences, 
Shahid Beheshti University of Medical Sciences, Tehran, Iran. Email: Elham.Nazari@sbmu.ac.ir

Academic Editor: Ulka Vaishampayan, MD, Department of Medicine, University of Michigan, Michigan, USA.

How to cite: Nazari E., et al. Identification of BCL11A, NTN5, and OGN as Diagnosis Biomarker of Papillary Renal Cell Carcinomas by Bio-
informatic Analysis. J Kidney Cancer. 2025;12(1): 12–22.

Doi: https://doi.org/10.15586/jkc.v12i1.366

Copyright: Nazari E., et al.

License: This open access article is licensed under Creative Commons Attribution 4.0 International (CC BY 4.0). http://creativecommons.org/
licenses/by/4.0

jkc.com



Identification of BCL11A, NTN5, and OGN as Diagnosis Biomarker of Papillary Renal Cell Carcinomas by Bioinformatic Analysis

	 Journal of Kidney Cancer 2025; 12(1): 12–22	 13

the improved diagnostic methods, and ultimately improves 
the survival prognosis of cancer patients by assessing the 
pathological stage, histological type, tumor grade, diagno-
sis, and prognosis of the disease (19-22). This study used 
TCGA database for gene expression proofing and machine 
learning to identify the differential expression genes (DEGs) 
of PRCC tumors. A machine learning-based algorithm was 
also used to identify molecular pathways, co-expressions of 
DEGs, and diagnostic markers associated with the disease.

Material and Methods
The collection of data
A total of 536 samples from the TCGA dataset, including 
RNA-seq (ribonucleic acid sequencing) data for kidney 
renal clear cell carcinoma (KIRC) patients and clinical fea-
tures, such as sex, tumor stage, TNM (T: size of the tumor 
and spread of cancer into nearby tissue; N: spread of can-
cer to nearby lymph nodes; M: metastasis) classification, 
and survival profile, were obtained (http://tcga-data.nci.
nih.gov/tcga/). For the following steps of RNA sequencing, 
530 tumor tissues were collected and 6 normal tissues were 
selected from the KIRC samples.

Identification of DEGs by preprocessing data
The identification of novel genes was performed using 
machine learning methods. As normalization and filtering are 
essential steps of data analysis, they were evaluated as pre-
processing steps prior to applying machine learning to RNA 
data. Using R programming, duplicate genes and samples 
were omitted from the dataset as part of the filtering process. 
Then, 20,531 genes were normalized by using Limma and 
Edge R packages. DEGs were screened according to the par-
ticular criteria, which included the log fold change (logFC) ≥ 
1.5 and P-value <.0.05. R software (version 4.01) was used to 
perform all the analysis as well as create the plots.

Identification of predictive markers
Our research utilized deep learning (DL) to predict DEGs 
as important markers in PRCC through a bioinformatic 
analysis. The DL subgroup of machine learning focused 
on predicting outcomes with multilayered neural network 
algorithms derived from the neurological architecture of the 
human brain. With DL, neural network architecture allows 
models to scale exponentially with the increasing quantity 
and complexity of data as opposed to other ML methods 
such as logistic regression. Hence, DL is widely used to solve 
complex computational problems, such as the classification 
of large-scale images, the processing of natural language, 
and the recognition and translation of speech (23).

Introduction
The incidence of kidney cancer is on the rise worldwide, 
making it the 13th most common malignancy (1, 2). In 2018, 
GLOBOCAN data indicated that 403,000 people were diag-
nosed with kidney cancer every year, accounting for 2.2% of 
all cancer diagnoses. The number of cases diagnosed in men 
was 254,500 and those in women was 148,800 (3). The renal 
cell carcinoma (RCC) is a heterogeneous disease that can be 
classified into a range of subtypes based on their histolog-
ical characteristics, including clear cell (ccRCC), papillary 
(PRCC), chromophobe (chRCC), collecting duct (ccRCC), 
and unclassified (4). It is estimated that 10–15% of RCCs are 
papillary renal cell carcinomas (PRCCs), the second most 
common subtype following clear cell renal cell carcinoma. 
PRCCs can be classified histologically into two types: type 1 
and type 2. PRCCs of type 2 are heterogeneous groups that 
can be further subdivided based on genetic and molecular 
characteristics (5). Presently, patients with advanced PRCC 
do not have access to an effective therapeutic approach (6). 
In recent years, a number of markers have been discovered 
that can predict the therapeutic effect and the outcome of 
renal clear cell carcinomas, including mutations in VHL, 
VEGF, CAIX, and HIF1a/2a (7). Despite this, a few studies 
have been conducted on the molecular biomarkers associated 
with PRCC to predict its curative effect (8). Consequently, it 
is imperative to identify novel molecular biomarkers which 
will aid in early diagnosis, provide insight into the pathology 
of the disease, and allow the development of effective thera-
peutic strategies.

The analysis of whole-genome expression (transcriptomic) 
provides early cancer detection, diagnostics, clinical out-
comes, and the potential for disease dissemination (9). It is 
now possible to obtain large amounts of cancer data from 
the medical research community because of the introduction 
of new technologies in medicine. A significant challenge for 
researchers is to be able to predict a cancer outcome accu-
rately. Therefore, machine learning methods, a subfield of 
artificial intelligence that provides computers with the ability 
to learn without having to be explicitly programmed, have 
become an increasingly popular tool for medical research-
ers. By applying these techniques, patterns and relationships 
can be discovered and identified from complex datasets; they 
are also capable of predicting future outcomes of a given 
type of cancer (10–14). As a result, these techniques have 
become increasingly popular and various biomarkers have 
been identified for the diagnosis, prognosis, and treatment of 
a wide range of cancers, including breast, prostate, pancre-
atic, and colorectal cancers in recent years (15–18). TCGA 
(The Cancer Genome Atlas), an integrated collection of 
clinical information and gene sequencing data, allows sys-
tematic analysis of the molecular mechanisms underlying 
clinical features associated with cancers. It contributes to 



Haghshenas Z et al.

	 Journal of Kidney Cancer 2025; 12(1): 12–22	 14

In order to implement machine learning, Python 3.7 
was used. Python packages including Pandas, NumPy, 
Matplotlib, and Scikit-learn were applied. Based on the 
training data, models were optimized and independently 
evaluated. In step 5, a ratio of 40/60 to 95/5 was compared 
with a ratio of 70/30 to determine if  methods of machine 
learning were approved. Area under the curve (AUC), accu-
racy, F1 score, R2 score, and confusion matrix were used to 
measure the performance of methods for identifying import-
ant genes.

In machine learning, accuracy is a metric for evaluating 
the degree to which the true positives and true negatives of 
machine learning classification are close to their true values. 
It is a method of categorizing imbalanced data into false 
positives and false negatives based on the degree of close-
ness between the measurement and its true value. AUC curve 
is a metric that determines whether a class can be correctly 
classified, and the area under the receiver operating charac-
teristic (ROC) curve is represented by the AUC. The ROC 
curve is commonly used to assess predictive models’ discrim-
inative abilities. The confusion matrix summarizes four types 
of classification (TN [True Negative], TP [True Positive], FN 
[False Negative], and FP [False Positive]) and defines the 
algorithm’s purpose. Performance models can be assessed 
using R2 score or coefficient of determination primarily in 
relation to feature selection (24–26).

Functional and pathway enrichment
An analysis of functional enrichment and the identification 
of critical pathways as they relate to the DEGs signature 
were annotated and visualized with the clusterProfiler pack-
age in R with a p-adjusted < 0.05 using cluster correlation 
coefficients.

Clinical data and DEGs correlation
In order to investigate if  DEGs were correlated with clini-
cal data such as age, tumor size, lymph node involvement, 
distant metastasis, and stage, 55 DEGs were analyzed using 
correlation matrixes and Spearman correlations in the R 
program using the ggcorrplot package and cor function in 
conjunction with the R program.

Combine ROC curve
We assessed the diagnostic efficacy and developed diagnos-
tic models using a generalized linear model and ROC curve 
analysis. For the assessment of the discrimination of individ-
ual or combined biomarkers, sensitivity, specificity, cut-off  
value, positive prediction, negative prediction, and area 
under the ROC curve were assessed. The entire procedure 
was implemented in R using the package combinoROC.

Validation of gene expression biomarkers

Through the use of Global Data Assembly Centers (GDAC) 
(https://gdac.broadinstitute.org/) and Gene Expression 
Omnibus (GEO) datasets (GSE2748, GSE7023, GSE48352, 
GSE15641, and GSE26574), the expression levels of candi-
date genes in PRCC patients were examined. It was obtained 
from this web tool that the validation dataset, consisting of 
data from KIRC patients, was preprocessed.

Results
Patient demographics

The clinical data are shown in Table 1. Our population 
consisted of 346 males and 190 females, the mean age was 
60.62 years, and were of three races: white, black, and Asian. 
Among the examined patients, 374 are alive and 162 died. 
About 39% of patients had advanced PRCC stage and the 
percentage of metastasis and lymph node involvement in 
patients was 14.7% and 3.2%, respectively.

Identification of DEGs

The data were downloaded from TCGA comprised of 536 
patients. After filtering and normalization, from 20,531 
genes, we reached 3,229 DEGs (tumor vs. normal) that had 
the logFC ≥ 1.5 and P-value < 0.05, and a representation of 
genes can be seen in a heat map (Figure 1) and principal 
component analysis (PCA) (Figure 2).

Identification of predictive markers

The key genes were analyzed by machine learning algorithm 
and DL, with the performance listed in Table 2. In general, 
10 genes that had the highest variable importance (more than 
0.9) were selected for further studies. Among them, six genes 
upregulated (BCL11A, NTN5, SEL1L3, SKA3, TAPBP, 
SEMA6A) and four genes downregulated (OGN, ADCY4, 
SMOC2, CCL23) (Table 3).

Functional and pathway enrichment

Based on the R software, a total of key genes were enriched 
for their gene ontology and KEGG pathway analysis. The 
connection of genes in key and different pathways was iden-
tified, including calcium signaling pathway, cAMP signaling 
pathway, complement and coagulation cascades, protein 
digestion and absorption, aldosterone synthesis and secre-
tion, vitamin D receptor pathway, signaling by GPCR, and 
more. In addition to PRCC, these genes also play a role in 
other diseases such as artery, vascular, cardiovascular system, 
urinary system, kidney, and benign neoplasm (Figure 3).
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Figure 1: Heatmap of differential expression genes in PRCC 
patients was drawn by R software.

Table 1: The Clinicopathological Characteristics Of Prcc 
Patients.

Clinicopathological Variables
No. of patients (%)/

mean ± SD

Patients 536

Mean age (years, mean ± SD) 60.62 ± 12.15

Sex

  Male 346 (64.6)

  Female 190 (53)

Race

  Asian 8 (1.5)

  White 466 (86.9)

  Black 55 (10.3)

  Missing data 7 (1.3)

Ethnicity

  Not Hispanic or Latino 358 (66.8)

  Hispanic or Latino 26 (4.9)

  Missing data 152 (28.4)

Vital status

  Dead 162 (30.2)

  Alive 374 (69.8)

Stage

  0 2 (0.4)

  1 268 (50)

  2 57 (10.6)

  3 125 (23.3)

  4 84 (15.7)

Depth of tumor invasion (T)

  T1 274 (51.1)

  T2 69 (12.9)

  T3 182 (34)

  T4 11 (2.1)

Lymph node involvement (N)

  No 240 (44.8)

  Yes 17 (3.2)

  Missing data 279 (52.1)

Metastasis (M)

  No 426 (79.5)

  Yes 79 (14.7)

  Missing data 31 (5.8)

Clinical data and DEGs correlation
As seen in Figure 4, the relationship between candidate 
genes and clinical information has been investigated which 
shows a direct relationship between stage and tumor invasion 
(pathologic T) and metastasis (pathologic M); tumor inva-
sion and metastasis also show a significant relationship with 
each other. A correlation of less than 0.3 is considered weak, 
between 0.3 and 0.6 moderate, and more than 0.6 strong.

A

B

Figure 1

(A)

(B)
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ROC curve for identification of diagnosis markers
Our results showed that among the three genes in question, 
OGN had the highest specificity and sensitivity (0.968 and 
0.866, respectively); also, the combination of BCL11A-
NTN5-OGN genes with specificity and sensitivity of 0.968 
and 0.901, respectively, can be used as a diagnostic bio-
marker for PRCC (Figure 5, Table 4).

Validation
As a result of the GEO analysis of the datasets, it was found 
that OGN and BCL genes were identified in 40% of the data-
sets and NTN genes in 20% of the datasets.

Discussion
An estimated 10–20% of all renal cell cancers are char-
acterized by PRCC, which is the second most common 
histological type of RCC. Rapid progress made in explain-
ing the molecular basis of this type of neoplasm in recent 
years has been remarkable; however, it is still not possible to 
provide a reliable molecular biomarker for detecting PRCC 
presence and grade of malignancy in daily clinical prac-
tice (27). In advanced stages, late diagnosis of this cancer has 
resulted in treatment failures and reduced survival rates (28). 

Figure 2: PCA of differential expression genes in PRCC 
patients.

Figure 2

A

B

Table 2: Deep learning performance.

MSE RMSE R^2 AUC Pr_AUC Accuracy

1.1814987E-4 0.010869676 0.99867266 1.0 1.0 97.77%

Table 3: The top DEGs of TCGA were ranked by deep 
learning

Genes Expression Variable Importance

BCL11A Up 1.000000

NTN5 Up 0.943672

OGN Down 0.937124

ADCY4 Down 0.923404

SMOC2 Down 0.916624

SEL1L3 Up 0.916577

CCL23 Down 0.915636

SKA3 Up 0.911442

TAPBP Up 0.911096

SEMA6A Up 0.910605

(A)

(B)
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Figure 3

A B

C D

E

Figure 3: (A) Reactome pathway enrichment, (B) DO enrichment in kidney cancer, (C) Enriched pathways, (D)  Barplot for 
WIKIPATHWAY pathway in kidney cancer, (E) Dotplot for WIKIPATHWAY pathway in kidney cancer. The P-value is less 
than 0.05 and is shown by the color.

(A)

(C)

(B)

(D)

(E)
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Figure 4 

Figure 5

BCL11A+NTN5

BCL11A+OGN

NTN5+OGN

BCL11A+NTN5+ OGN

Figure 4: Correlation matrix shows significant co-relationship 
between clinical and demographic influence variables in 
PRCC; blue and red circles are displayed as positive and 
negative correlations, respectively. The size of circle and color 
intensity are associated with the correlation coefficients. The 
values of correlation coefficients are presented at the color 
intensity bar and the nonsignificant correlation is displayed 
in crosses.

Figure 5: Combine ROC curve of BCL11A, NTN5, 
and OGN genes (combination 1 = BCL11A + NTN5, 
combination 2 = BCL11A + OGN, combination 3 = NTN5 + 
OGN, combination 4 = BCL11A + NTN5 + OGN) T
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clinicopathological features, which may provide an advanta-
geous prognostic biomarker for ccRCC patients (37, 38). As 
with many genes, BCL11A is regulated in part by miRNAs, 
and the let-7 family of miRNAs seems to affect BCL11A 
expression (39). Let-7 miRNAs play an important role in cell 
cycle control, differentiation, and apoptosis, and are widely 
considered tumor suppressors (40). Let-7 family members 
were found in abundance in urine cell-free supernatants of 
patients with ccRCC; let-7a outperformed the other miR-
NAs and may be a promising noninvasive biomarker for the 
detection of ccRCC (41).

Netrins are a family of highly conserved proteins that, 
in conjunction with semaphorins, slits, and ephrins, serve 
as neuronal guidance cues (42). In the beginning, these 
substances were known to play an important role in the 
development of the central nervous system, but over the last 
decade, they have been shown to participate in many other 
processes beyond the central nervous system development, 
including a pivotal role in the development of cancer (43). 
There is a correlation between mutations of members of the 
netrin family and cancer genetic characteristics, which sug-
gests that these mutations may serve as potential biomarkers 
for prognosis and diagnosis. According to the studies, tumor 
mutations in members of the netrin family show unique 
distribution patterns correlated with cancer type, protein 
structure, and ethnicity (44). A study conducted in individ-
uals with inflammatory bowel disease demonstrated that 
NTN1 is upregulated in fibroblasts associated with colorec-
tal cancer promoting cancer cell stemness, thereby enhancing 
cancer cell progression (45, 46). Moreover, NTN1 has also 
been associated with the occurrence, development, survival, 
and clinical parameters of kidney cancer and non-small cell 
lung cancer (44, 47, 48). A number of clinical parameters, 
such as survival rates, are associated with the expression 
or methylation of NTNG1 and NTNG2. Besides, netrins 
are also altered by epigenetic and transcriptional factors in 
pan-cancer, which are associated with the activation of the 
EMT (epithelial–mesenchymal transition) pathway (44). 
Furthermore, a study found that NTN1/3/4/G1 were sig-
nificantly downregulated and NTN5/G2 were significantly 
upregulated in ccRCC tissues compared to normal renal 
tissues, suggesting that netrin family members may be prom-
ising biomarkers for the detection of ccRCC (49). Among 
the netrins, NTN-5 (NTN5) has been the most recently 
discovered, receiving little attention thus far. Expressed in 
neuroproliferative zones, it is related to migration pathways 
in the adult brain (50). For the first time in this study, an 
increase in NTN5 expression was detected in PRCC, and 
based on the ROC curve, it can serve as a diagnostic bio-
marker for the diagnosis of this disease.

A wide range of cells secrete small leucine-rich proteogly-
cans (SLRPs), which are involved in a variety of processes. 

It is becoming increasingly important to find diagnostic bio-
markers that can be used to detect early stage cancer and 
prevent it from progressing. This study aimed to develop 
diagnostic biomarkers for PRCC which can be used either 
alone or combined with other diagnostic biomarkers. Based 
on the results of the analysis listed in Table 3, 10 genes were 
selected for further analysis, 6 of which showed upregulation 
and 4 showed downregulation; then, ROC curves were drawn 
for three genes—BCL11A, NTN5, and OGN.

Reporting the role of BCL11A (B-cell lymphoma/
leukemia 11A) in malignant solid tumors is rare, but over-
expression of BCL11A has been detected in some malignant 
solid tumors, suggesting that this gene may be a valuable 
diagnostic and prognostic tool for these tumors (29). In 
LSCC (laryngeal squamous cell carcinoma) tissues, high 
levels of BCL11A were found and correlated with advanced 
lymphatic metastasis stages with poor prognoses. It has been 
shown that overexpression of BCL11A increases LSCC 
proliferation in vitro and in vivo; however, overexpression 
also causes high levels of MDM2 expression in LSCC cells, 
which interferes with the activity of p53 (30). Amplification 
of BCL11A has also been demonstrated in lung squamous 
cell cancers (SCC), with the highest concentration of ampli-
fication found in samples from NSCLC (non-small cell lung 
cancer) without metastases. The expression of BCL11A was 
greater in patients with early stage cancer, suggesting that 
the activation of BCL11A proto-oncogene may occur at an 
early stage in lung cancer. Thus, BCL11A may play a role 
in diagnosing and predicting the prognosis of patients with 
lung cancer, particularly those with early stage lung squa-
mous carcinoma (31, 32). According to research, BCL11A 
expression levels decreased with increasing histological 
malignancy in breast cancer cases as well as cell lines. It was 
also negatively correlated with the size of primary tumors. 
The expression of BCL11A in BC that did not express estro-
gen or progesterone receptors as well as triple-negative cases 
was significantly lower. Therefore, it is likely that BCL11A is 
downregulated during the process of cancer occurrence (33). 
Additionally, in another study, BCL11A and SOX11 proteins 
were observed to have a significant positive correlation in 
the blood, suggesting that the two proteins may be regulated 
by the same pathway (34). A group of genes known as SOX 
have been implicated in the development of the kidney. In 
the early kidney anlagen, SOX11 is expressed at a level of 
both mesenchymal and epithelial expression. SOX11 directly 
binds and regulates a locus control region of the protocad-
herin B cluster on a molecular level. SOX11 is restricted to 
the intermediate segment of the developing nephron, as it 
is necessary for the elongation of Henle’s loop during the 
later stages of kidney development (35, 36). A number of 
other members of the SOX family, such as SOX6, SOX12, 
and SOX2, have also been shown to be associated with 
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These processes include protein-protein interactions, signal 
transduction, cell adhesion, and DNA repair (51). In addi-
tion to their ability to bind collagen, the SLRP family also 
performs outside-in signaling (52). In addition to being 
one of the SLRPs, osteoglycin (OGN) is a member of the 
family of extracellular proteoglycans, which have several 
leucine-rich repeats, just like other members of the family. 
In addition to binding collagen and several growth factors, 
OGN may also be involved in remodeling the extracellular 
matrix (ECM); EGFRs (epidermal growth factor) and IGFs 
(insulin growth factor) are among the receptors (53). Many 
cancer cell lines lack the expression of OGN, suggesting 
that it may serve as a tumor suppressor gene in the devel-
opment of cancer (54). Both ECRG4 and OGN function 
as tumor suppressors in the bladder, with ECRG4 overex-
pression inhibiting NF-kB signaling and promoting NFIC/
OGN signaling in bladder cancer cells (55). OGN expression 
is associated with increased survival and decreased recur-
rence of colorectal cancer. OGN also suppresses the EGFR/
AKT/Zeb-1 axis, reversing the EMT (56). However, elevated 
expression of OGN is associated with the EMT process and 
shorter overall survival in ovarian carcinoma tissues (57). In 
another study in breast cancer, OGN levels were significantly 
reduced in breast cancer tissue; overexpression of OGN sig-
nificantly inhibited cell proliferation, migration, and invasion 
and reversed EMT phenotypic changes. Furthermore, OGN’s 
tumor suppressor activity in BC is demonstrated to be medi-
ated by its effect on the PI3K/AKT/mTOR pathways (58). 
A significant reduction in OGN expression was observed in 
gastric cancer tissues, and a decrease in OGN expression was 
associated with more lymph node metastasis and poor differ-
entiation status, both indications that a cancer has advanced. 
These results suggest that OGN downregulation might con-
tribute to the progression of gastric cancer and could be 
utilized for the diagnosis and monitoring of cancer (53). A 
study investigated proteomics for diagnostic biomarkers of 
laryngeal cancer, and four differential proteins (PFN1, NCL, 
CNDP2, and OGN) with expressional changes were selected 
to test for differential expressions. Sone of the four proteins 
were shown to be potential biomarkers for detection or ther-
apeutic targets of human laryngeal carcinoma (59). As a 
result, based on the role of OGN in cancer and its potential 
as a biomarker, in this study, the role of this gene in PRCC 
has been shown for the first time, and based on the ROC 
curve, it is possible for it to be used alone or in combination 
with two other genes—BCL11A and NTN5—to detect this 
disease.
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