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Abstract

Renal cell carcinoma (RCC), the most common kidney cancer, is responsible for more than 100,000 deaths per year worldwide.
The molecular mechanism of RCC is poorly understood. Many studies have indicated that epigenetic changes such as DNA
methylation, noncoding RNAs, and histone modifications are central to the pathogenesis of cancer. Histone demethylases
(KDMs) play a central role in histone modifications. There is emerging evidence that KDMs such as KDM3A, KDM5C,
KDM6A, and KDM6B play important roles in RCC. The available literature suggests that KDMs could promote RCC devel-
opment and progression via hypoxia-mediated angiogenesis pathways. Small-molecule inhibitors of KDMs are being developed
and used in preclinical studies; however, their clinical relevance is yet to be established. In this mini review, we summarize our
current knowledge on the putative role of histone demethylases in RCC.
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Introduction

Renal cell carcinoma (RCC) accounts for 2%–3% of all adult
malignancies and causes more than 100,000 deaths per year
worldwide (1). Radical or partial nephrectomy of the tumor
at an early stage remains the mainstay of curative therapy
(2). Metastases are present at the time of initial diagnosis
in approximately one-third of patients, which are generally
resistant to chemotherapy and radiation therapy (3). A better
understanding of molecular mechanisms of RCC is necessary

for improvement of treatment outcomes. Epigenetics refers
to functionally relevant changes in the genome that affect
the expression of specific genes without the involvement of
changes in the DNA sequence (4). The common epigenetic
events include DNA methylation, changes in noncoding
RNAs and posttranslational modifications (PTMs) of histone.
PTMs of histone involve the covalent modification of histone
through acetylation, methylation, and phosphorylation (5).
PTMs of histone regulate DNA replication, transcription, and
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repair of many biological processes (6). Histone methylation,
a process by which methyl groups are transferred to lysine
or arginine residues of histone, is a type of PTM of histone.
Histone methylation influences many biological processes in
the context of development and cellular responses (7).
Abnormality of histone methylation can lead to various dis-
orders including cancer (8). In this mini review, we summarize
the emerging role of histone demethylases, key players in
histone methylation, in RCC.

Histone Demethylases and RCC

In 2004, the first histone demethylase KDM1 was discovered,
and in the earlier days histone methylation was thought to be
irreversible (9, 10). In 2006, several jumonji C (JmjC)-
domain-containing demethylases were identified (11, 12),
and subsequent studies showed that histone methylation is
reversible. Histone demethylases play a key role in eukaryotic
transcription (activation or repression) and other chromatin-
dependent processes such as chromosome condensation and
DNA damage (13). These demethylases have been implicated
in the control of gene expression and cell fate decisions
(14, 15). Many histone demethylases have been linked to
human diseases (15–17), including RCC (Table 1).

KDM3A

KDM3A (also named as JMJD1A, JHDM2A) is an
H3K9me1/2 demethylase of JmjC family and plays an essen-
tial role in spermatogenesis and adipogenesis (13, 14).
KDM3A is also involved in other cellular processes such
as cell cycle, embryonic and adult stem cell renewal, and
differentiation of vascular smooth muscle (15). KDM3A
has been implicated in the development and progression of
several malignancies, including hepatocellular carcinoma
and gastric cancer (16, 17). We and other researchers have
reported that overexpression of KDM3A is associated with
RCC development (18, 19). RCC samples from patients
showed a higher expression of KDM3A when compared
with normal noncancerous regions of the kidneys. Further-
more, KDM3A was highly expressed around blood vessels
of RCC samples (18). KDM3A was also associated with an
increase in hypoxia-inducible factor 1-alpha (HIF-1α) (18).
In vitro experiments with the RCC cell line 786-0 showed

that KDM3A was higher in hypoxic conditions than in nor-
moxic conditions. Taken together, these findings (18) suggest
the potential role of KDM3A in RCC development and pro-
gression via hypoxia-mediated angiogenesis pathway.

KDM5C

KDM5C (also known as JARID1C) is an H3K4me1/2
demethylase that plays an important role in brain develop-
ment and function. Mutations of KDMC5C can lead to
X-linked mental retardation (23). KDM5C abnormality
was also associated with cancer development. For example,
KDM5C was significantly upregulated in breast cancer
tissues compared with paired normal breast tissues, and was
positively correlated with metastasis (24). Inactivating muta-
tions of KDM5C were identified in 101 clear cell RCC
(ccRCC) cases using massive parallel sequencing technologies
(20). Further studies in 132 ccRCC patients showed that
KDM5C was mutated in 4% of the cases (21).

KDM6A and KDM6B

KDM6A (also named as UTX) is an H3K27me2/3 demethy-
lase, that is, essential for normal embryonic development
and tissue-specific differentiation (25). Inactivating somatic
mutations of KDM6A have been identified in RCC (26).
Our results showed that expression of KDM6A is upregulated
in RCC (22). KDM6B, also known as JMJD3, is another
H3K27me2/3 demethylase that plays important roles in
inflammatory response and senescence (27). We found
that KDM6B is also overexpressed in RCC, and maybe
involved in oncogene-induced senescence (22). Thus, both
KDM6A and KDM6B appear to have a proto-oncogenic
role in RCC.

Possible Mechanisms of Histone Demethylases

in RCC Development

RCC is a hypoxia-related cancer because inactivating muta-
tions of the tumor suppressor von Hippel-Lindau (VHL)
gene are frequent in RCC than in other cancers. VHL is a
ubiquitin ligase and its inactivation leads to increased protein
stability of HIF1-α (28). HIF can change global patterns
of histone modifications through transactivation of several
histone demethylases (29, 30). Histone demethylases such as

Table 1. Histone demethylases implicated in RCC.

Nomenclature Official symbol Substrate Function References

KDM3A JMJD1A H3K9me1/2 Metabolism, reproduction (18, 19)

KDM5C JARID1C H3K4me1/2 Neural development (20, 21)

KDM6A UTX H3K27me2/3 Development (22)

KDM6B JMJD3 H3K27me2/3 Inflammatory response, senescence (22)

RCC, renal cell carcinoma.
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KDM3A, KDM3B, KDM4B, KDM5A, and KDM6B have
been identified as HIF regulated demethylases (31). KDM3A
has been established as a hypoxia-induced demethylase by
several researchers (32–35). Upregulation of KDM3A
mRNA and protein could be observed in RCC cell lines (786-0)
exposed to hypoxia (1% O2) or iron scavengers (deferoxamine
treatment). There is a hypoxia response element in the promoter
region of the KDM3A gene, which can be bound by HIF-1
(33, 35). KDM6B was recently identified as a new hypoxia-
inducible histone demethylase (36, 37). The expressions of
KDM6AandKDM6B are also regulated by nicotine and nickel
(38, 39), which are thought to induce RCC (40).

Histone demethylases can act as coactivators of certain
nuclear factors including androgen receptor (AR), estrogen
receptor, and HIF-1α. KDM3A is not only the coactivator of
AR (13) but also the coactivator of HIF-1α (41). KDM3A can
further increase specific genes expression, such as GLUT3, adre-
nomedullin, c-Myc, FGF2, HGF, and ANG2 (41–43). VHL
inactivation in RCC can decrease H3K4me3 levels through
KDM5C, which alters gene expression including IGFBP3 and
GDF15 (44). In contrast,KDM5C inactivation can lead togeno-
mic instability in RCC (45). These findings indicate that several
histone demethylases can be induced under hypoxia which in
turn regulate the expression of cancer-related genes, and trigger
RCC development.

Is There a Therapeutic Potential for KDM Inhibitors

in RCC?

Current targeted therapies for metastatic RCCmainly include
mTOR inhibitors, VEGFA receptor tyrosine kinase inhibi-
tors, and anti-VEGFA antibodies (46). However, their effica-
cies are limited, and there is a need to identify new targets.
Histone demethylases are one of the promising targets (47).
There is increasing interest in targeting KDMs with small
molecules for therapeutic purposes (48). Several high-
throughput screening strategies have been developed to screen
for small-molecule inhibitors of KDMs (49). Many histone
demethylase inhibitors are being developed and tested (50,
51), including GSK-J1/GSK-J4 (KDM6B inhibitor) and
NSC 636819 (KDM4A/KDM4B inhibitor). Research has
indicated that GSK-J4 has potent antitumor role both in
cell lines and animal models of glioma by inhibiting the
KDM6B activity and increasing H3K27 methylation (51).
Although histone demethylase inhibitors have substantial
medicinal potential for the treatment of cancer (52), the
major challenge is that these inhibitors are either character-
ized by low specificity or that their target enzymes have low
substrate specificity (53). Furthermore, to date, no conclusive
data are available on the efficacy of histone demethylase inhi-
bitors on RCC. However, given that several compounds such
as vitamins C and D have regulatory effects on expression or
activity of histone demethylases including KDM3A and
KDM6B (54, 55), targeting histone demethylases appears to
be a potential therapeutic option for RCC (56).

Conclusion

The past decade has witnessed tremendous improvements in
the management of metastatic RCC through the introduction
of many targeted therapies in clinical practice. Despite this,
metastatic RCC still remains a difficult disease to treat. Better
understanding of the molecular mechanisms that govern
RCC development and progression will enable the develop-
ment of novel compounds. There is emerging evidence that
histone demethylases play a role in the development and pro-
gression of RCC, at least in part, via hypoxia-mediated angio-
genesis pathway. This is particularly important given that
hypoxia-induced angiogenesis pathway plays a crucial role
in RCC progression, largely mediated by aberrations of
the VHL gene. Furthermore, most of the targeted therapies
inhibit the angiogenesis pathway. Thus, inhibition of histone
demethylases, because of their perceived role in hypoxia-
mediated angiogenesis, is a promising field for further explora-
tion. In addition, the role of currently available targeted therapies
on histone demethylases is another area for future research.
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