Histological Tracking into the Third Dimension Evolution of Early Tumorigenesis in VHL Kidney

Main Article Content

Mayyan Mubarak
Nayef Al Gharaibeh
Samuel Sommaruga
Jie Li
Alexander Vortmeyer https://orcid.org/0000-0001-5437-5092

Keywords

Carcinogenesis, 3dimensional reconstruction, Kidney cancer, Tumor precursors, VHL

Abstract

Using a novel three-dimensional (3D) approach, we tracked histological changes to elucidate the earliest stages of renal clear cell neoplasia in normal kidney tissue of patients with von Hippel-Lindau (VHL) disease. Tissue blocks of interest were procured, serially sectioned, and 3D reconstruction of the entirety of pathologic events was performed. The results reveal an abundance of foci with aberrant clear cell proliferation that initially develop along the tubular lining, but have the potential to aggregate within individual tubules. This stage is followed by the extension of clear cell aggregates beyond the tubular basement membrane, which allows for the recruitment of angiogenesis derived from interstitial vasculature. The results suggest that the most frequent pathologic event in VHL kidneys is the presence of isolated or aggregated clear cells within the tubular epithelium, potentially developing further into a protracted process of neoplasia. The abundance of independent pathologic events in VHL kidneys confirms developmental mechanisms to precede tumor initiation. To our knowledge, this is the first report demonstrating that tracking of histologic changes in the 3rd dimension enables the confirmation of the sequence of events from the earliest pathologic change in the VHL kidney to the neoplastic stage. This approach is not only useful for visualization and quantification of pathologic changes but also for targeted sampling allowing selective analysis of the earliest stages of clear cell carcinogenesis.

Abstract 73 | PDF Downloads 41 XML Downloads 4 HTML Downloads 6

References

1. Glasker S, Vergauwen E, Koch CA, Kutikov A, Vortmeyer AO. Von Hippel-Lindau disease: Current challenges and future prospects. Onco Targets Ther. 2020;13:5669–5690.https://doi.org/10.2147/OTT.S190753

2. Vortmeyer AO, Yuan Q, Lee YS, Zhuang Z, Oldfield EH. Developmental effects of von Hippel-Lindau gene deficiency. Ann Neurol. 2004;55:721–728.
https://doi.org/10.1002/ana.20090

3. Vortmeyer AO, Tran M, Zeng W, Gläsker S, Riley C, Tsokos M, et al. Evolution of VHL tumorigenesis in nerve root tissue. J Pathol 2006;210 (3):374–382.
https://doi.org/10.1002/path.2062

4. Shively SB, Falke EA, Li J, Tran MG, Thompson ER, Maxwell PH, et al. Developmentally arrested structures preceding cerebellar tumors in von Hippel-Lindau disease. Mod Pathol 2011;24(8):1023–1030.
https://doi.org/10.1038/modpathol.2011.61

5. Glasker S, Li J, Xia JB, Okamoto H, Zeng W, Lonser RR, et al. Hemangioblastomas share protein expression with embryonal hemangioblast progenitor cell. Cancer Res. 2006;66(8):4167–4172.
https://doi.org/10.1158/0008-5472.CAN-05-3505

6. Glasker S, Tran MG, Shively SB, Ikejiri B, Lonser RR, Maxwell PH, et al. Epididymal cystadenomas and epithelial tumorlets: Effects of VHL deficiency on human epididymis. J Pathol 2006; 210 (1): 32–41.
https://doi.org/10.1002/path.2029

7. Walther MM, Lubensky IA, Venzon D, Zbar B, Linehan WM. Prevalence of microscopic lesions in grossly normal renal parenchyma from patients with von Hippel-Lindau disease, sporadic renal cell carcinoma and no renal disease: Clinical implications. J Urol. 1995; 154 (6): 2010–2014. Available from: https://pubmed.ncbi.nlm.nih.gov/7500446/


8. Mandriota SJ, Turner KJ, Davies DR, Murray PG, Morgan NV, Sowter HM, et al. HIF activation identifies early lesions in VHL kidneys: Evidence for site-specific tumor suppressor function in the nephron. Cancer Cell. 2002;1:459–468.
https://doi.org/10.1016/S1535-6108(02)00071-5

9. Sommaruga S. Mesonephric carcinogenesis in VHL disease. 11th International VHL/Medical Research Symposium, Madrid; 2014. Available from: https://www.vhl.org/wp-content/uploads/2015/11/Madrid-Presentation-Summaries.pdf

10. Frew IJ, Moch H. A clearer view of the molecular complexity of clear cell renal cell carcinoma. Annu Rev Pathol Mech Dis. 2015;10:263–289.
https://doi.org/10.1146/annurev-pathol-012414-040306

11. Dickenmann M, Oettl T, Mihatsch MJ. Osmotic nephrosis acute kidney injury with accumulation of proximal tubular lysosomes due to administration of exogenous solutes. Am J Kidney Dis. 2008;51(3):491–503.
https://doi.org/10.1053/j.ajkd.2007.10.044

12. Zhou C, Vink R, Byard RW. Hyperosmolarity induces Armanni-Ebstein-like renal tubular epithelial swelling and cytoplasmic vacuolization. J Forensic Sci. 2017;62(1):229–232.
https://doi.org/10.1111/1556-4029.13235

13. Meehan S. Osmotic tubulopathy. In: Colvin R, Chang A, editors. Diagnostic pathology: kidney diseases. 3rd ed. Elsevier: Philadelphia; 2019. p. 670–673.

14. Moreau JF, Droz D, Sabto J, Jungers P, Kleinknecht D, Hinglais N, et al. Osmotic nephrosis induced by water-soluble triiodinated contrast media in man. A retrospective study of 47 cases. Radiology. 1975;115(2): 329–336. https://doi.org/10.1148/115.2.329

15. Ortiz-Rey JA, Fachal C, Juaneda-Magdalena L, Muñoz-Martín M, Repáraz-Andrade A, Teijeira S, et al. Clear cell clusters in the kidney: A rare finding that should not be misdiagnosed as renal cell carcinoma. Virchows Archiv, 2021;479(1): 57–67. https://doi.org/10.1007/s00428-021-03018-4
16. Lamiell JM, Salazar FG, Hsia YE. von Hippel-Lindau disease affecting 43 members of a single kindred. Medicine (Baltimore). 1989;68(1):1–29.
https://doi.org/10.1097/00005792-198901000-00001
17. Meister M, Choyke P, Anderson C, Patel U. Radiological evaluation, management, and surveillance of renal masses in von Hippel-Lindau disease. Clin Radiol. 2009;64(6):589–600. https://doi.org/10.1016/j.crad.2008.10.010
18. Van Poppel H, Nilsson S, Algaba F, Bergerheim U, Dal Cin P, Fleming S, et al. Precancerous lesions in the kidney. Scand J Urol Nephrol Suppl. 2000;(205):136–165.
19. Khani F, Robinson BD. Precursor lesions of urologic malignancies. Arch Pathol Lab Med. 2017;141(12):1615–1632.
https://doi.org/10.5858/arpa.2016-0515-RA
20. Montani M, Heinimann K, von Teichman A, Rudolph T, Perren A, Moch H. VHL-gene deletion in single renal tubular epithelial cells: Further evidence of a cyst-dependent progression pathway of clear cell renal carcinoma in von Hippel-Lindau disease. Am J Surg Pathol. 2010;34(6):806–815.
https://doi.org/10.1097/PAS.0b013e3181ddf54d
21. Mubarak M. Effects of von Hippel-Lindau (VHL) gene deficiency on the human kidney Quinnipiac University: Hamden, CT; 2015 .
22. Shively SB, Beltaifa S, Gehrs B, Duong H, Smith J, Edwards NA, et al. Protracted haemangioblastic proliferation and differentiation in von Hippel-Lindau disease. J Pathol. 2008; 216(4):514–520. https://doi.org/10.1002/path.2435
23. Mitchell TJ, Turajlic S, Rowan A, Nicol D, Farmery JHR, O'Brien T, et al. Timing of the landmark events in the evolution of clear cell renal cell cancer: TRACERx renal. Cell. 173 (3):611–623. https://doi.org/10.1016/j.cell.2018.02.020
24. Hansson J, Hultenby K, Cramnert C, Pontén F, Jansson H, Lindgren D, et al. Evidence for a morphologically distinct and functionally robust cell type in the proximal tubules of human kidney. Hum Pathol. 2014;45(2):382–393. https://doi.org/10.1016/j.humpath.2013.10.003
25. Lindgren D, Bostrom A-K, Nilsson K, Hansson J, Sjölund J, Möller C, et al. Isolation and characterization of progenitor-like cells from human renal proximal tubules. Am J Pathol 2011;178(2):828–837. https://doi.org/10.1016/j.ajpath.2010.10.026