The epigenetic landscape of clear-cell renal cell carcinoma

Main Article Content

Katarzyna Kluzek
Hans A Bluyssen
Joanna Wesoly

Keywords

clear-cell renal cell carcinoma (ccRCC), tumor suppressor gene (TSG), epigenetic modification, epigenetic biomarkers

Abstract

Clear cell renal cell carcinoma (ccRCC) is the most common subtype of all kidney tumors. During the last few years, epigenetics has emerged as an important mechanism in ccRCC pathogenesis. Recent reports, involving large-scale methylation and sequencing analyses, have identified genes frequently inactivated by promoter methylation and recurrent mutations in genes encoding chromatin regulatory proteins. Interestingly, three of detected genes (PBRM1, SETD2 and BAP1) are located on chromosome 3p, near the VHL gene, inactivated in over 80% ccRCC cases. This suggests that 3p alterations are an essential part of ccRCC pathogenesis. Moreover, most of the proteins encoded by these genes cooperate in histone H3 modifications. The aim of this review is to summarize the latest discoveries shedding light on deregulation of chromatin machinery in ccRCC. Newly described ccRCC-specific epigenetic alterations could potentially serve as novel diagnostic and prognostic biomarkers and become an object of novel therapeutic strategies.

Abstract 2984 | PDF Downloads 1236 HTML Downloads 9150

References

1. Mathew A, Devesa SS, Fraumeni JF, Jr., Chow WH. Global increases in kidney cancer incidence, 1973-1992. Eur J Cancer Prev 2002; 11(2):171-178. Doi: http://dx.doi.org/10.1097/00008469-200204000-00010

2. Sun M et al. Age-adjusted incidence, mortality, and survival rates of stage-specific renal cell carcinoma in North America: a trend analysis. Eur Urol 2011; 59(1):135-141.
Doi: http:/.dx.doi.org/10.1016/j.eururo.2010.10.029

3. Ferlay J SI, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray, F. (2012 v1.0) GLOBOCAN Cancer Incidence and Mortality Worldwide: IARC CancerBase No 11. Internet

4. Baldewijns MM, van Vlodrop IJ, Schouten LJ, Soetekouw PM, de Bruine AP, van Engeland M. Genetics and epigenetics of renal cell cancer. Biochim Biophys Acta 2008; 1785(2):133-155.
Doi: http://dx.doi.org/10.1016/j.bbcan.2007.12.002

5. Brugarolas J. Renal-cell carcinoma--molecular pathways and therapies. N Engl J Med 2007; 356(2):185-187. Doi: http://dx.doi.org/10.1056/NEJMe068263

6. Motzer RJ. New perspectives on the treatment of metastatic renal cell carcinoma: an introduction and historical overview. Oncologist 2011; 16 Suppl 2:1-3.
Doi: http://dx.doi.org/10.1634/theoncologist.2011-S2-01

7. Wood CG. Multimodal approaches in the management of locally advanced and metastatic renal cell carcinoma: combining surgery and systemic therapies to improve patient outcome. Clin Cancer Res 2007; 13(2 Pt 2):697s-702s. Doi: http://dx.doi.org/10.1158/1078-0432.CCR-06-2109

8. Weiss RH, Lin PY. Kidney cancer: identification of novel targets for therapy. Kidney Int 2006; 69(2):224-232. Doi: http://dx.doi.org/10.1038/sj.ki.5000065

9. Gossage L, Eisen T, Maher ER. VHL, the story of a tumour suppressor gene. Nat Rev Cancer 2015; 15(1):55-64. Doi: http://dx.doi.org/10.1038/nrc3844

10. Varela I et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 2011; 469(7331):539-542. Doi: http://dx.doi.org/10.1038/nature09639

11. Dalgliesh GL et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 2010; 463(7279):360-363. Doi: http://dx.doi.org/10.1038/nature08672

12. Guo G et al. Frequent mutations of genes encoding ubiquitin-mediated proteolysis pathway components in clear cell renal cell carcinoma. Nat Genet 2012; 44(1):17-19.
Doi: http://dx.doi.org/10.1038/ng.1014

13. Herman JG et al. Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci U S A 1994; 91(21):9700-9704.
Doi: http://dx.doi.org/10.1073/pnas.91.21.9700

14. Kouzarides T. Chromatin modifications and their function. Cell 2007; 128(4):693-705. Doi: http://dx.doi.org/10.1016/j.cell.2007.02.005

15. Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis 2010; 31(1):27-36. Doi: http://dx.doi.org/10.1093/carcin/bgp220

16. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 2013; 499(7456):43-49. Doi: http://dx.doi.org/10.1038/nature12222

17. Ricketts CJ, Hill VK, Linehan WM. Tumor-specific hypermethylation of epigenetic biomarkers, including SFRP1, predicts for poorer survival in patients from the TCGA Kidney Renal Clear Cell Carcinoma (KIRC) project. PLoS One 2014; 9(1):e85621. Doi: http://dx.doi.org/10.1371/journal.pone.0085621

18. Rydzanicz M, Wrzesinski T, Bluyssen HA, Wesoly J. Genomics and epigenomics of clear cell renal cell carcinoma: recent developments and potential applications. Cancer Lett 2013; 341(2):111-126.
Doi: http://dx.doi.org/10.1016/j.canlet.2013.08.006

19. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev 2002; 16(1):6-21. Doi: http://dx.doi.org/10.1101/gad.947102

20. Bock C. Analysing and interpreting DNA methylation data. Nat Rev Genet 2012; 13(10):705-719. Doi: http://dx.doi.org/10.1038/nrg3273

21. Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 2012; 13(7):484-492. Doi: http://dx.doi.org/10.1038/nrg3230

22. Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999; 99(3):247-257.
Doi: http://dx.doi.org/10.1016/S0092-8674(00)81656-6

23. Kim GD, Ni J, Kelesoglu N, Roberts RJ, Pradhan S. Co-operation and communication between the human maintenance and de novo DNA (cytosine-5) methyltransferases. EMBO J 2002; 21(15):4183-4195.
Doi: http://dx.doi.org/10.1093/emboj/cdf401

24. Wang Y, Leung FC. An evaluation of new criteria for CpG islands in the human genome as gene markers. Bioinformatics 2004; 20(7):1170-1177. Doi: http://dx.doi.org/10.1093/bioinformatics/bth059

25. Tsai HC, Baylin SB. Cancer epigenetics: linking basic biology to clinical medicine. Cell Res 2011; 21(3):502-517. Doi: http://dx.doi.org/10.1038/cr.2011.24

26. Clifford SC, Prowse AH, Affara NA, Buys CH, Maher ER. Inactivation of the von Hippel-Lindau (VHL) tumour suppressor gene and allelic losses at chromosome arm 3p in primary renal cell carcinoma: evidence for a VHL-independent pathway in clear cell renal tumourigenesis. Genes Chromosomes Cancer 1998; 22(3):200-209. Doi: http://dx.doi.org/10.1002/(SICI)1098-2264(199807)22:3<200::AID-GCC5>3.0.CO;2-#

27. Nickerson ML et al. Improved identification of von Hippel-Lindau gene alterations in clear cell renal tumors. Clin Cancer Res 2008; 14(15):4726-4734. Doi: http://dx.doi.org/10.1158/1078-0432.CCR-07-4921

28. Morris MR, Maher ER. Epigenetics of renal cell carcinoma: the path towards new diagnostics and therapeutics. Genome Med 2010; 2(9):59. Doi: http://dx.doi.org/10.1186/gm180

29. Morris MR, Ricketts C, Gentle D, Abdulrahman M, Clarke N, Brown M, Kishida T, Yao M, Latif F, Maher ER. Identification of candidate tumour suppressor genes frequently methylated in renal cell carcinoma. Oncogene 2010; 29(14):2104-2117. Doi: http://dx.doi.org/10.1038/onc.2009.493

30. Morris MR et al. Genome-wide methylation analysis identifies epigenetically inactivated candidate tumour suppressor genes in renal cell carcinoma. Oncogene 2011; 30(12):1390-1401.
Doi: http://dx.doi.org/10.1038/onc.2010.525

31. McRonald FE et al. CpG methylation profiling in VHL related and VHL unrelated renal cell carcinoma. Mol Cancer 2009; 8:31. Doi: http://dx.doi.org/10.1186/1476-4598-8-31

32. Ricketts CJ, Morris MR, Gentle D, Brown M, Wake N, Woodward ER, Clarke N, Latif F, Maher ER. Genome-wide CpG island methylation analysis implicates novel genes in the pathogenesis of renal cell carcinoma. Epigenetics 2012; 7(3):278-290. Doi:http://dx.doi.org/10.4161/epi.7.3.19103

33. Dmitriev AA et al. Epigenetic alterations of chromosome 3 revealed by NotI-microarrays in clear cell renal cell carcinoma. Biomed Res Int 2014; 2014:735292. Doi: http://dx.doi.org/10.1155/2014/735292

34. Jiang C, Pugh BF. Nucleosome positioning and gene regulation: advances through genomics. Nat Rev Genet 2009; 10(3):161-172. Doi: http://dx.doi.org/10.1038/nrg2522

35. Hohmann AF, Vakoc CR. A rationale to target the SWI/SNF complex for cancer therapy. Trends Genet 2014; 30(8):356-363.
Doi: http://dx.doi.org/10.1016/j.tig.2014.05.001

36. Reisman D, Glaros S, Thompson EA. The SWI/SNF complex and cancer. Oncogene 2009; 28(14):1653-1668. Doi: http://dx.doi.org/10.1038/onc.2009.4

37. Pena-Llopis S et al. BAP1 loss defines a new class of renal cell carcinoma. Nat Genet 2012; 44(7):751-759. Doi: http://dx.doi.org/10.1038/ng.2323

38. Pawlowski R, Muhl SM, Sulser T, Krek W, Moch H, Schraml P. Loss of PBRM1 expression is associated with renal cell carcinoma progression. Int J Cancer 2013; 132(2):E11-17.
Doi: http://dx.doi.org/10.1002/ijc.27822

39. Xia W, Nagase S, Montia AG, Kalachikov SM, Keniry M, Su T, Memeo L, Hibshoosh H, Parsons R. BAF180 is a critical regulator of p21 induction and a tumor suppressor mutated in breast cancer. Cancer Res 2008; 68(6):1667-1674. Doi: http://dx.doi.org/10.1158/0008-5472.CAN-07-5276

40. Kapur P, Pena-Llopis S, Christie A, Zhrebker L, Pavia-Jimenez A, Rathmell WK, Xie XJ, Brugarolas J. Effects on survival of BAP1 and PBRM1 mutations in sporadic clear-cell renal-cell carcinoma: a retrospective analysis with independent validation. Lancet Oncol 2013; 14(2):159-167. Doi: http://dx.doi.org/10.1016/S1470-2045(12)70584-3

41. Lichner Z, Scorilas A, White NM, Girgis AH, Rotstein L, Wiegand KC, Latif A, Chow C, Huntsman D, Yousef GM. The chromatin remodeling gene ARID1A is a new prognostic marker in clear cell renal cell carcinoma. Am J Pathol 2013; 182(4):1163-1170. Doi: http://dx.doi.org/10.1016/j.ajpath.2013.01.007

42. Girgis AH et al. Multilevel whole-genome analysis reveals candidate biomarkers in clear cell renal cell carcinoma. Cancer Res 2012; 72(20):5273-5284. Doi: http://dx.doi.org/10.1158/0008-5472.CAN-12-0656

43. Wu JN, Roberts CW. ARID1A mutations in cancer: another epigenetic tumor suppressor? Cancer Discov 2013; 3(1):35-43. Doi: http://dx.doi.org/10.1158/2159-8290.CD-12-0361

44. Kelly TK, De Carvalho DD, Jones PA. Epigenetic modifications as therapeutic targets. Nat Biotechnol 2010; 28(10):1069-1078. Doi: http://dx.doi.org/10.1038/nbt.1678

45. Ruthenburg AJ, Li H, Patel DJ, Allis CD. Multivalent engagement of chromatin modifications by linked binding modules. Nat Rev Mol Cell Biol 2007; 8(12):983-994. Doi: http://dx.doi.org/10.1038/nrm2298

46. Haberland M, Montgomery RL, Olson EN. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 2009; 10(1):32-42.
Doi: http://dx.doi.org/10.1038/nrg2485

47. Duns G, van den Berg E, van Duivenbode I, Osinga J, Hollema H, Hofstra RM, Kok K. Histone methyltransferase gene SETD2 is a novel tumor suppressor gene in clear cell renal cell carcinoma. Cancer Res 2010; 70(11):4287-4291. Doi: http://dx.doi.org/10.1158/0008-5472.CAN-10-0120

48. Pena-Llopis S, Christie A, Xie XJ, Brugarolas J. Cooperation and antagonism among cancer genes: the renal cancer paradigm. Cancer Res 2013; 73(14):4173-4179.
Doi: http://dx.doi.org/10.1158/0008-5472.CAN-13-0360

49. Gerlinger M et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 2012; 366(10):883-892. Doi: http://dx.doi.org/10.1056/NEJMoa1113205

50. Li F, Mao G, Tong D, Huang J, Gu L, Yang W, Li GM. The histone mark H3K36me3 regulates human DNA mismatch repair through its interaction with MutSalpha. Cell 2013; 153(3):590-600.
Doi: http://dx.doi.org/10.1016/j.cell.2013.03.025

51. Alexandrov LB et al. Signatures of mutational processes in human cancer. Nature 2013; 500(7463):415-421. Doi: http://dx.doi.org/10.1038/nature12477

52. Kanu N et al. SETD2 loss-of-function promotes renal cancer branched evolution through replication stress and impaired DNA repair. Oncogene 2015. Doi: http://dx.doi.org/10.1038/onc.2015.24

53. Carvalho S, Vitor AC, Sridhara SC, Martins FB, Raposo AC, Desterro JM, Ferreira J, de Almeida SF. SETD2 is required for DNA double-strand break repair and activation of the p53-mediated checkpoint. Elife 2014; 3:e02482. Doi: http://dx.doi.org/10.7554/eLife.02482

54. van Haaften G et al. Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat Genet 2009; 41(5):521-523. Doi: http://dx.doi.org/10.1038/ng.349

55. Niu X, Zhang T, Liao L, Zhou L, Lindner DJ, Zhou M, Rini B, Yan Q, Yang H. The von Hippel-Lindau tumor suppressor protein regulates gene expression and tumor growth through histone demethylase JARID1C. Oncogene 2012; 31(6):776-786. Doi: http://dx.doi.org/10.1038/onc.2011.266

56. Sato Y et al. Integrated molecular analysis of clear-cell renal cell carcinoma. Nat Genet 2013; 45(8):860-867. Doi: http://dx.doi.org/10.1038/ng.2699

57. Cao J, Yan Q. Histone ubiquitination and deubiquitination in transcription, DNA damage response, and cancer. Front Oncol 2012; 2:26.
Doi: http://dx.doi.org/10.3389/fonc.2012.00026

58. Wang SS et al. Bap1 is essential for kidney function and cooperates with Vhl in renal tumorigenesis. Proc Natl Acad Sci U S A 2014; 111(46):16538-16543.
Doi: http://dx.doi.org/10.1073/pnas.1414789111

59. Simon JM, Giresi PG, Davis IJ, Lieb JD. Using formaldehyde-assisted isolation of regulatory elements (FAIRE) to isolate active regulatory DNA. Nat Protoc 2012; 7(2):256-267.
Doi: http://dx.doi.org/10.1038/nprot.2011.444

60. Buck MJ, Raaijmakers LM, Ramakrishnan S, Wang D, Valiyaparambil S, Liu S, Nowak NJ, Pili R. Alterations in chromatin accessibility and DNA methylation in clear cell renal cell carcinoma. Oncogene 2014; 33(41):4961-4965. Doi: http://dx.doi.org/10.1038/onc.2013.455

61. Simon JM et al. Variation in chromatin accessibility in human kidney cancer links H3K36 methyltransferase loss with widespread RNA processing defects. Genome Res 2014; 24(2):241-250.
Doi: http://dx.doi.org/10.1101/gr.158253.113

62. Hakimi AA et al. Clinical and pathologic impact of select chromatin-modulating tumor suppressors in clear cell renal cell carcinoma. Eur Urol 2013; 63(5):848-854.
Doi: http://dx.doi.org/10.1016/j.eururo.2012.09.005

63. Hakimi AA et al. Adverse outcomes in clear cell renal cell carcinoma with mutations of 3p21 epigenetic regulators BAP1 and SETD2: a report by MSKCC and the KIRC TCGA research network. Clin Cancer Res 2013; 19(12):3259-3267. Doi: http://dx.doi.org/10.1158/1078-0432.CCR-12-3886

64. Arai E, Chiku S, Mori T, Gotoh M, Nakagawa T, Fujimoto H, Kanai Y. Single-CpG-resolution methylome analysis identifies clinicopathologically aggressive CpG island methylator phenotype clear cell renal cell carcinomas. Carcinogenesis 2012; 33(8):1487-1493. Doi: http://dx.doi.org/10.1093/carcin/bgs177

65. Tian Y, Arai E, Gotoh M, Komiyama M, Fujimoto H, Kanai Y. Prognostication of patients with clear cell renal cell carcinomas based on quantification of DNA methylation levels of CpG island methylator phenotype marker genes. BMC Cancer 2014; 14:772. Doi: http://dx.doi.org/10.1186/1471-2407-14-772

66. Vasudev NS, Selby PJ, Banks RE. Renal cancer biomarkers: the promise of personalized care. BMC Med 2012; 10:112. Doi: http://dx.doi.org/10.1186/1741-7015-10-112

67. Vieira-Coimbra M, Henrique R, Jeronimo C. New insights on chromatin modifiers and histone post-translational modifications in renal cell tumours. Eur J Clin Invest 2015; 45 Suppl 1:16-24.
Doi: http://dx.doi.org/10.1111/eci.12360

68. de Martino M, Klatte T, Haitel A, Marberger M. Serum cell-free DNA in renal cell carcinoma: a diagnostic and prognostic marker. Cancer 2012; 118(1):82-90. Doi: http://dx.doi.org/10.1002/cncr.26254

69. Bennett KL, Campbell R, Ganapathi S, Zhou M, Rini B, Ganapathi R, Neumann HP, Eng C. Germline and somatic DNA methylation and epigenetic regulation of KILLIN in renal cell carcinoma. Genes Chromosomes Cancer 2011; 50(8):654-661. Doi: http://dx.doi.org/10.1002/gcc.20887

70. Liao LM et al. LINE-1 methylation levels in leukocyte DNA and risk of renal cell cancer. PLoS One 2011; 6(11):e27361. Doi: http://dx.doi.org/10.1371/journal.pone.0027361

71. Fritzsche FR et al. Class I histone deacetylases 1, 2 and 3 are highly expressed in renal cell cancer. BMC Cancer 2008; 8:381. Doi: http://dx.doi.org/10.1186/1471-2407-8-381

72. Minardi D, Lucarini G, Filosa A, Milanese G, Zizzi A, Di Primio R, Montironi R, Muzzonigro G. Prognostic role of global DNA-methylation and histone acetylation in pT1a clear cell renal carcinoma in partial nephrectomy specimens. J Cell Mol Med 2009; 13(8B):2115-2121. Doi: http://dx.doi.org/10.1111/j.1582-4934.2008.00482.x

73. Jones J, Juengel E, Mickuckyte A, Hudak L, Wedel S, Jonas D, Blaheta RA. The histone deacetylase inhibitor valproic acid alters growth properties of renal cell carcinoma in vitro and in vivo. J Cell Mol Med 2009; 13(8B):2376-2385. Doi: http://dx.doi.org/10.1111/j.1582-4934.2008.00436.x

74. Siu LL et al. Phase I study of MGCD0103 given as a three-times-per-week oral dose in patients with advanced solid tumors. J Clin Oncol 2008; 26(12):1940-1947.
Doi: http://dx.doi.org/10.1200/JCO.2007.14.5730

75. Larkin J, Goh XY, Vetter M, Pickering L, Swanton C. Epigenetic regulation in RCC: opportunities for therapeutic intervention? Nat Rev Urol 2012; 9(3):147-155.
Doi: http://dx.doi.org/10.1038/nrurol.2011.236

76. Hainsworth JD, Infante JR, Spigel DR, Arrowsmith ER, Boccia RV, Burris HA. A phase II trial of panobinostat, a histone deacetylase inhibitor, in the treatment of patients with refractory metastatic renal cell carcinoma. Cancer Invest 2011; 29(7):451-455. Doi: http://dx.doi.org/10.3109/07357907.2011.590568

77. Stadler WM, Margolin K, Ferber S, McCulloch W, Thompson JA. A phase II study of depsipeptide in refractory metastatic renal cell cancer. Clin Genitourin Cancer 2006; 5(1):57-60.
Doi: http://dx.doi.org/10.3816/CGC.2006.n.018

78. Mahalingam D et al. Vorinostat enhances the activity of temsirolimus in renal cell carcinoma through suppression of survivin levels. Clin Cancer Res 2010; 16(1):141-153.
Doi: http://dx.doi.org/10.1158/1078-0432.CCR-09-1385

79. Touma SE, Goldberg JS, Moench P, Guo X, Tickoo SK, Gudas LJ, Nanus DM. Retinoic acid and the histone deacetylase inhibitor trichostatin a inhibit the proliferation of human renal cell carcinoma in a xenograft tumor model. Clin Cancer Res 2005; 11(9):3558-3566. Doi: http://dx.doi.org/10.1158/1078-0432.CCR-04-1155

80. Wang XF, Qian DZ, Ren M, Kato Y, Wei Y, Zhang L, Fansler Z, Clark D, Nakanishi O, Pili R. Epigenetic modulation of retinoic acid receptor beta2 by the histone deacetylase inhibitor MS-275 in human renal cell carcinoma. Clin Cancer Res 2005; 11(9):3535-3542. Doi: http://dx.doi.org/10.1158/1078-0432.CCR-04-1092

81. Spannhoff A, Sippl W, Jung M. Cancer treatment of the future: inhibitors of histone methyltransferases. Int J Biochem Cell Biol 2009; 41(1):4-11.
Doi: http://dx.doi.org/10.1016/j.biocel.2008.07.024

82. Liu L, Xu Z, Zhong L, Wang H, Jiang S, Long Q, Xu J, Guo J. EZH2 promotes tumor cell migration and invasion via epigenetic repression of E-cadherin in renal cell carcinoma. BJU Int 2014.
Doi: http://dx.doi.org/10.1111/bju.12702

83. Adelaiye R et al. Sunitinib dose escalation overcomes transient resistance in clear cell renal cell carcinoma and is associated with epigenetic modifications. Mol Cancer Ther 2015; 14(2):513-522.
Doi: http://dx.doi.org/10.1158/1535-7163.MCT-14-0208

84. Kundaje A et al. Integrative analysis of 111 reference human epigenomes. Nature 2015; 518(7539):317-330. Doi: http://dx.doi.org/10.1038/nature14248

85. Paul DS, Beck S. Advances in epigenome-wide association studies for common diseases. Trends Mol Med 2014; 20(10):541-543. Doi: http://dx.doi.org/10.1016/j.molmed.2014.07.002

86. CAGEKID. http://www.cng.fr/cagekid/index.html/

87. Biomarker pipeline. http://www.biomarkerpipeline.org/nihr/

88. EuroTARGET.http://www.eurotargetproject.eu/

89. PREDICT consortium.http://www.predictconsortium.eu/

90. Hirata H et al. Wnt antagonist DKK1 acts as a tumor suppressor gene that induces apoptosis and inhibits proliferation in human renal cell carcinoma. Int J Cancer 2011; 128(8):1793-1803.
Doi: http://dx.doi.org/10.1002/ijc.25507

91. Hirata H et al. Wnt antagonist gene DKK2 is epigenetically silenced and inhibits renal cancer progression through apoptotic and cell cycle pathways. Clin Cancer Res 2009; 15(18):5678-5687.
Doi: http://dx.doi.org/10.1158/1078-0432.CCR-09-0558

92. Urakami S et al. Wnt antagonist family genes as biomarkers for diagnosis, staging, and prognosis of renal cell carcinoma using tumor and serum DNA. Clin Cancer Res 2006; 12(23):6989-6997.
Doi: http://dx.doi.org/10.1158/1078-0432.CCR-06-1194

93. Christoph F, Weikert S, Kempkensteffen C, Krause H, Schostak M, Kollermann J, Miller K, Schrader M. Promoter hypermethylation profile of kidney cancer with new proapoptotic p53 target genes and clinical implications. Clin Cancer Res 2006; 12(17):5040-5046. Doi: http://dx.doi.org/10.1158/1078-0432.CCR-06-0144

94. Ahmad ST, Arjumand W, Seth A, Saini AK, Sultana S. Methylation of the APAF-1 and DAPK-1 promoter region correlates with progression of renal cell carcinoma in North Indian population. Tumour Biol 2012; 33(2):395-402. Doi: http://dx.doi.org/10.1007/s13277-011-0235-9

95. Ibanez de Caceres I, Dulaimi E, Hoffman AM, Al-Saleem T, Uzzo RG, Cairns P. Identification of novel target genes by an epigenetic reactivation screen of renal cancer. Cancer Res 2006; 66(10):5021-5028.
Doi: http://dx.doi.org/10.1158/0008-5472.CAN-05-3365

96. Yoo KH, Park YK, Kim HS, Jung WW, Chang SG. Epigenetic inactivation of HOXA5 and MSH2 gene in clear cell renal cell carcinoma. Pathol Int 2010; 60(10):661-666.
Doi: http://dx.doi.org/10.1111/j.1440-1827.2010.02578.x

97. Zhang Q, Ying J, Li J, Fan Y, Poon FF, Ng KM, Tao Q, Jin J. Aberrant promoter methylation of DLEC1, a critical 3p22 tumor suppressor for renal cell carcinoma, is associated with more advanced tumor stage. J Urol 2010; 184(2):731-737. Doi: http://dx.doi.org/10.1016/j.juro.2010.03.108

98. van Vlodrop IJ et al. Prognostic significance of Gremlin1 (GREM1) promoter CpG island hypermethylation in clear cell renal cell carcinoma. Am J Pathol 2010; 176(2):575-584.
Doi: http://dx.doi.org/10.2353/ajpath.2010.090442

99. Gossage L et al. Clinical and pathological impact of VHL, PBRM1, BAP1, SETD2, KDM6A, and JARID1c in clear cell renal cell carcinoma. Genes Chromosomes Cancer 2014; 53(1):38-51.
Doi: http://dx.doi.org/10.1002/gcc.22116