Circulating biomarkers in renal cell carcinoma: the link between microRNAs and extracellular vesicles, where are we now?

Main Article Content

Ana L Teixeira
Francisca Dias
Monica Gomes
Mara Fernandes
Rui Medeiros

Keywords

MicroRNA, renal cell carcinoma, extracellular vescicles

Abstract

Renal cell carcinoma (RCC) is a lethal urological cancer, with incidence and mortality rates increasing by 2-3% per decade. The lack of standard screening tests contributes to the fact that one-third of patients are diagnosed with locally invasive or metastatic disease. Moreover, 20-40% of RCC patients submitted to surgical nephrectomy will develop metastasis. MicroRNAs (miRNAs) are small non-coding RNAs responsible for gene regulation at a post-transcriptional level.  It is accepted that they are deregulated in cancer and can influence tumor development. Thus, miRNAs are promising RCC biomarkers, since they can be detected using non-invasive methods. They are highly stable and easier to quantify in circulating biofluids. The elevated miRNA stability in circulating samples may be the consequence of their capacity to circulate inside of extracellular microvesicles (EMVs), for example, the exosomes.  The EMVs are bilayered membrane vesicles secreted by all cell types. They can be released in the interstitial space or into circulating biofluids, which allows the travelling, binding and entrance of these vesicles in receptor cells. This type of cell communication can shuttle bioactive molecules between cells, allowing the horizontal transference of genetic material. In this review, we focus on circulating miRNAs (miR-210, miR-1233, miR-221, miR-15a, miR-451, miR-508, miR-378) in the biofluids of RCC patients and attempt to establish the diagnostic and prognostic accuracy, their synergic effects, and the pathways involved in RCC biology.

Abstract 3360 | PDF Downloads 1216 HTML Downloads 9037

References

1. Bhatt JR and Finelli A. Landmarks in the diagnosis and treatment of renal cell carcinoma. Nat Rev Urol, 2014. 11(9): 517-25. Doi: http://dx.doi.org/10.1038/nrurol.2014.194

2. Dias F, Teixeira AL, Santos JI, et al. Renal cell carcinoma development and miRNAs: a possible link to the EGFR pathway. Pharmacogenomics, 2013. 14(14): 1793-803. Doi: http://dx.doi.org/10.2217/pgs.13.184

3. Bex A, Jonasch E, Kirkali Z, et al. Integrating surgery with targeted therapies for renal cell carcinoma: current evidence and ongoing trials. Eur Urol, 2010. 58(6): 819-28. Doi: http://dx.doi.org/10.1016/j.eururo.2010.08.029

4. Inman BA, Harrison MR and George DJ. Novel immunotherapeutic strategies in development for renal cell carcinoma. Eur Urol, 2013. 63(5): 881-9. Doi: http://dx.doi.org/10.1016/j.eururo.2012.10.006

5. Majid N, Ismaili N, Amzerin M, et al. Targeted therapy for metastatic renal cell carcinoma: Current treatment and future directions. Clinical Cancer Investigation Journal, 2013. 2(3): 195-201.
Doi: http://dx.doi.org/10.4103/2278-0513.119257

6. Ljungberg B, Campbell SC, Choi HY, et al. The epidemiology of renal cell carcinoma. Eur Urol, 2011. 60(4): 615-21. Doi: http://dx.doi.org/10.1016/j.eururo.2011.06.049

7. Decastro GJ and McKiernan JM. Epidemiology, clinical staging, and presentation of renal cell carcinoma. Urol Clin North Am, 2008. 35(4): 581-92. Doi: http://dx.doi.org/10.1016/j.ucl.2008.07.005

8. Gupta K, Miller JD, Li JZ, et al. Epidemiologic and socioeconomic burden of metastatic renal cell carcinoma (mRCC): a literature review. Cancer Treat Rev, 2008. 34(3): 193-205.
Doi: http://dx.doi.org/10.1016/j.ctrv.2007.12.001

9. Motzer RJ, Russo P, Nanus DM, et al. Renal cell carcinoma. Curr Probl Cancer, 1997. 21(4): 185-232. Doi: http://dx.doi.org/10.1016/S0147-0272(97)80007-4

10. Cohen HT and McGovern FJ. Renal-cell carcinoma. N Engl J Med, 2005. 353(23): 2477-90. Doi: http://dx.doi.org/10.1056/NEJMra043172

11. Yang JC, Sherry RM, Steinberg SM, et al. Randomized study of high-dose and low-dose interleukin-2 in patients with metastatic renal cancer. J Clin Oncol, 2003. 21(16): 3127-32.
Doi: http://dx.doi.org/10.1200/JCO.2003.02.122

12. Coppin C, Porzsolt F, Awa A, et al. Immunotherapy for advanced renal cell cancer. Cochrane Database Syst Rev, 2005(1): Cd001425. [Pubmed]

13. Ravaud A and Gross-Goupil M. Overcoming resistance to tyrosine kinase inhibitors in renal cell carcinoma. Cancer Treat Rev, 2012. 38(8): 996-1003. Doi: http://dx.doi.org/10.1016/j.ctrv.2012.01.003

14. Abe H and Kamai T. Recent advances in the treatment of metastatic renal cell carcinoma. Int J Urol, 2013. 20(10): 944-55. Doi: http://dx.doi.org/10.1111/iju.12187

15. Patard JJ, Pignot G, Escudier B, et al. ICUD-EAU International Consultation on Kidney Cancer 2010: treatment of metastatic disease. Eur Urol, 2011. 60(4): 684-90.
Doi: http://dx.doi.org/10.1016/j.eururo.2011.06.017

16. Rini BI and Flaherty K. Clinical effect and future considerations for molecularly-targeted therapy in renal cell carcinoma. Urol Oncol, 2008. 26(5): 543-9. Doi: http://dx.doi.org/10.1016/j.urolonc.2008.03.012

17. Ngo TC, Wood CG and Karam JA. Biomarkers of renal cell carcinoma. Urologic oncology, 2014. 32(3): 243-251. Doi: http://dx.doi.org/10.1016/j.urolonc.2013.07.011

18. Weber JA, Baxter DH, Zhang S, et al. The microRNA spectrum in 12 body fluids. Clin Chem, 2010. 56(11): 1733-41. Doi: http://dx.doi.org/10.1373/clinchem.2010.147405

19. Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res, 2008. 18(10): 997-1006.
Doi: http://dx.doi.org/10.1038/cr.2008.282

20. Li L, Choi JY, Lee KM, et al. DNA methylation in peripheral blood: a potential biomarker for cancer molecular epidemiology. J Epidemiol, 2012. 22(5): 384-94. Doi: http://dx.doi.org/10.2188/jea.JE20120003

21. Niers TMH, Richel DJ, Meijers JCM, et al. Vascular Endothelial Growth Factor in the Circulation in Cancer Patients May Not Be a Relevant Biomarker. PLoS ONE, 2011. 6(5): e19873.
Doi: http://dx.doi.org/10.1371/journal.pone.0019873

22. Thomas CM and Sweep CG. Serum tumor markers: past, state of the art, and future. Int J Biol Markers, 2001. 16(2): 73-86. [Pubmed]

23. Duffy MJ. Role of tumor markers in patients with solid cancers: A critical review. Eur J Intern Med, 2007. 18(3): 175-84. Doi: http://dx.doi.org/10.1016/j.ejim.2006.12.001

24. Duffy MJ. Tumor markers in clinical practice: a review focusing on common solid cancers. Med Princ Pract, 2013. 22(1): 4-11. Doi: http://dx.doi.org/10.1159/000338393

25. Ganti S and Weiss RH. Urine metabolomics for kidney cancer detection and biomarker discovery. Urol Oncol, 2011. 29(5): 551-7. Doi: http://dx.doi.org/10.1016/j.urolonc.2011.05.013

26. Wulfken LM, Moritz R, Ohlmann C, et al. MicroRNAs in renal cell carcinoma: diagnostic implications of serum miR-1233 levels. PLoS One, 2011. 6(9): e25787.
Doi: http://dx.doi.org/10.1371/journal.pone.0025787

27. Redova M, Poprach A, Nekvindova J, et al. Circulating miR-378 and miR-451 in serum are potential biomarkers for renal cell carcinoma. J Transl Med, 2012. 10: 55.
Doi: http://dx.doi.org/10.1186/1479-5876-10-55

28. Wu X, Weng L, Li X, et al. Identification of a 4-microRNA signature for clear cell renal cell carcinoma metastasis and prognosis. PLoS One, 2012. 7(5): e35661.
Doi: http://dx.doi.org/10.1371/journal.pone.0035661

29. Gambari R, Fabbri E, Borgatti M, et al. Targeting microRNAs involved in human diseases: a novel approach for modification of gene expression and drug development. Biochem Pharmacol, 2011. 82(10): 1416-29. Doi: http://dx.doi.org/10.1016/j.bcp.2011.08.007

30. Zhang J, Zhao H, Gao Y, et al. Secretory miRNAs as novel cancer biomarkers. Biochim Biophys Acta, 2012. 1826(1): 32-43. Doi: http://dx.doi.org/10.1016/j.bbcan.2012.03.001

31. Melo SA and Esteller M. A precursor microRNA in a cancer cell nucleus: get me out of here! Cell Cycle, 2011. 10(6): 922-5. Doi: http://dx.doi.org/10.4161/cc.10.6.15119

32. Melo SA and Esteller M. Dysregulation of microRNAs in cancer: playing with fire. FEBS Lett, 2011. 585(13): 2087-99. Doi: http://dx.doi.org/10.1016/j.febslet.2010.08.009

33. Aslam MI, Taylor K, Pringle JH, et al. MicroRNAs are novel biomarkers of colorectal cancer. Br J Surg, 2009. 96(7): 702-10. Doi: http://dx.doi.org/10.1002/bjs.6628

34. Negrini M, Nicoloso MS and Calin GA. MicroRNAs and cancer--new paradigms in molecular oncology. Curr Opin Cell Biol, 2009. 21(3): 470-9. Doi: http://dx.doi.org/10.1016/j.ceb.2009.03.002

35. Hummel R, Hussey DJ and Haier J. MicroRNAs: predictors and modifiers of chemo- and radiotherapy in different tumour types. Eur J Cancer, 2010. 46(2): 298-311.
Doi: http://dx.doi.org/10.1016/j.ejca.2009.10.027

36. Cho WC. MicroRNAs: potential biomarkers for cancer diagnosis, prognosis and targets for therapy. Int J Biochem Cell Biol, 2010. 42(8): 1273-81 Doi: http://dx.doi.org/10.1016/j.biocel.2009.12.014

37. Chow TF, Youssef YM, Lianidou E, et al. Differential expression profiling of microRNAs and their potential involvement in renal cell carcinoma pathogenesis. Clin Biochem, 2010. 43(1-2): 150-8.
Doi: http://dx.doi.org/10.1016/j.clinbiochem.2009.07.020

38. Grange C, Collino F, Tapparo M, et al. Oncogenic micro-RNAs and Renal Cell Carcinoma. Front Oncol, 2014. 4(49). [Pubmed]

39. Hanahan D and Weinberg R. Hallmarks of Cancer: The Next Generation. Cell 2011. 144: 646-674. Doi: http://dx.doi.org/10.1016/j.cell.2011.02.013

40. Joyce JA and Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer, 2009. 9(4): 239-52. Doi: http://dx.doi.org/10.1038/nrc2618

41. Sato-Kuwabara Y, Melo SA, Soares FA, et al. The fusion of two worlds: Non-coding RNAs and extracellular vesicles - diagnostic and therapeutic implications (Review). Int J Oncol, 2015. 46(1): 17-27.
Doi: http://dx.doi.org/10.3892/ijo.2014.2712

42. D'Souza-Schorey C and Clancy JW. Tumor-derived microvesicles: shedding light on novel microenvironment modulators and prospective cancer biomarkers. Genes Dev, 2012. 26(12): 1287-99. Doi: http://dx.doi.org/10.1101/gad.192351.112

43. Nawaz M, Camussi G, Valadi H, et al., The emerging role of extracellular vesicles as biomarkers for urogenital cancers: Nat Rev Urol. 2014 Nov 18. Doi: http://dx.doi.org/10.1038/nrurol.2014.301

44. Henderson MC and Azorsa DO. The Genomic and Proteomic Content of Cancer Cell-Derived Exosomes. Frontiers in Oncology, 2012. 2. Doi: http://dx.doi.org/10.3389/fonc.2012.00038

45. Svensson KJ and Belting M. Role of extracellular membrane vesicles in intercellular communication of the tumour microenvironment. Biochem Soc Trans, 2013. 41(1): 273-6.
Doi: http://dx.doi.org/10.1042/BST20120248

46. Valadi H, Ekstrom K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol, 2007. 9(6): 654-9.
Doi: http://dx.doi.org/10.1038/ncb1596

47. King HW, Michael MZ and Gleadle JM. Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer, 2012. 12(421): 1471-2407. Doi: http://dx.doi.org/10.1186/1471-2407-12-421

48. Kahlert C, Melo SA, Protopopov A, et al. Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J Biol Chem, 2014. 289(7): 3869-75. Doi: http://dx.doi.org/10.1074/jbc.C113.532267

49. Muralidharan-Chari V, Clancy JW, Sedgwick A, et al. Microvesicles: mediators of extracellular communication during cancer progression. J Cell Sci, 2010. 123(Pt 10): 1603-11.
Doi: http://dx.doi.org/10.1242/jcs.064386

50. van Doormaal FF, Kleinjan A, Di Nisio M, et al. Cell-derived microvesicles and cancer. Neth J Med, 2009. 67(7): 266-73. [Pubmed]

51. Simpson RJ, Jensen SS and Lim JW. Proteomic profiling of exosomes: current perspectives. Proteomics, 2008. 8(19): 4083-99. Doi: http://dx.doi.org/10.1002/pmic.200800109

52. de Gassart A, Geminard C, Fevrier B, et al. Lipid raft-associated protein sorting in exosomes. Blood, 2003. 102(13): 4336-44. Doi: http://dx.doi.org/10.1182/blood-2003-03-0871

53. Keller S, Ridinger J, Rupp AK, et al. Body fluid derived exosomes as a novel template for clinical diagnostics. J Transl Med, 2011. 9: 86. Doi: http://dx.doi.org/10.1186/1479-5876-9-86

54. Li QL, Bu N, Yu YC, et al. Exvivo experiments of human ovarian cancer ascites-derived exosomes presented by dendritic cells derived from umbilical cord blood for immunotherapy treatment. Clin Med Oncol, 2008. 2: 461-7. [Pubmed]

55. Gonzales PA, Zhou H, Pisitkun T, et al. Isolation and purification of exosomes in urine. Methods Mol Biol, 2010. 641: 89-99. Doi: http://dx.doi.org/10.1007/978-1-60761-711-2_6

56. Zhou Q, Li M, Wang X, et al. Immune-related microRNAs are abundant in breast milk exosomes. Int J Biol Sci, 2012. 8(1): 118-23. Doi: http://dx.doi.org/10.7150/ijbs.8.118

57. Navabi H, Croston D, Hobot J, et al. Preparation of human ovarian cancer ascites-derived exosomes for a clinical trial. Blood Cells Mol Dis, 2005. 35(2): 149-52.
Doi: http://dx.doi.org/10.1016/j.bcmd.2005.06.008

58. Ogawa Y, Kanai-Azuma M, Akimoto Y, et al. Exosome-like vesicles with dipeptidyl peptidase IV in human saliva. Biol Pharm Bull, 2008. 31(6): 1059-62. Doi: http://dx.doi.org/10.1248/bpb.31.1059

59. Del Conde I, Shrimpton CN, Thiagarajan P, et al. Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood, 2005. 106(5): 1604-11.
Doi: http://dx.doi.org/10.1182/blood-2004-03-1095

60. Skog J, Wurdinger T, van Rijn S, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol, 2008. 10(12): 1470-6. Doi: http://dx.doi.org/10.1038/ncb1800

61. Rabinowits G, Gercel-Taylor C, Day JM, et al. Exosomal microRNA: a diagnostic marker for lung cancer. Clin Lung Cancer, 2009. 10(1): 42-6. Doi: http://dx.doi.org/10.3816/CLC.2009.n.006

62. Chan JA, Krichevsky AM and Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res, 2005. 65(14): 6029-33. Doi: http://dx.doi.org/10.1158/0008-5472.CAN-05-0137

63. Taylor DD and Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol, 2008. 110(1): 13-21.
Doi: http://dx.doi.org/10.1016/j.ygyno.2008.04.033

64. Ohshima K, Inoue K, Fujiwara A, et al. Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PLoS One, 2010. 5(10): e13247.
Doi: http://dx.doi.org/10.1371/journal.pone.0013247

65. Grange C, Tapparo M, Collino F, et al. Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Res, 2011. 71(15): 5346-56.
Doi: http://dx.doi.org/10.1158/0008-5472.CAN-11-0241

66. Osanto S, Qin Y, Buermans HP, et al. Genome-wide microRNA expression analysis of clear cell renal cell carcinoma by next generation deep sequencing. PLoS One, 2012. 7(6): 20.
Doi: http://dx.doi.org/10.1371/journal.pone.0038298

67. White NM, Khella HW, Grigull J, et al. miRNA profiling in metastatic renal cell carcinoma reveals a tumour-suppressor effect for miR-215. Br J Cancer, 2011. 105(11): 1741-9.
Doi: http://dx.doi.org/10.1038/bjc.2011.401

68. Wan G, Xie W, Liu Z, et al. Hypoxia-induced MIR155 is a potent autophagy inducer by targeting multiple players in the MTOR pathway. Autophagy, 2014. 10(1): 70-9. Doi: http://dx.doi.org/10.4161/auto.26534

69. Camps C, Buffa FM, Colella S, et al. hsa-miR-210 Is induced by hypoxia and is an independent prognostic factor in breast cancer. Clin Cancer Res, 2008. 14(5): 1340-8.
Doi: http://dx.doi.org/10.1158/1078-0432.CCR-07-1755

70. Yang Y, Ahn YH, Chen Y, et al. ZEB1 sensitizes lung adenocarcinoma to metastasis suppression by PI3K antagonism. J Clin Invest, 2014. 124(6): 2696-708. Doi: http://dx.doi.org/10.1172/JCI72171

71. Youssef YM, White NM, Grigull J, et al. Accurate molecular classification of kidney cancer subtypes using microRNA signature. Eur Urol, 2011. 59(5): 721-30.
Doi: http://dx.doi.org/10.1016/j.eururo.2011.01.004

72. Teixeira AL, Ferreira M, Silva J, et al. Higher circulating expression levels of miR-221 associated with poor overall survival in renal cell carcinoma patients. Tumour Biol, 2014. 35(5): 4057-66.
Doi: http://dx.doi.org/10.1007/s13277-013-1531-3

73. Shah MY and Calin GA. MicroRNAs miR-221 and miR-222: a new level of regulation in aggressive breast cancer. Genome Med, 2011. 3(8): 56. Doi: http://dx.doi.org/10.1186/gm272

74. Zhang C, Zhang J, Hao J, et al. High level of miR-221/222 confers increased cell invasion and poor prognosis in glioma. J Transl Med, 2012. 10: 119. Doi: http://dx.doi.org/10.1186/1479-5876-10-119

75. Santos JI, Teixeira AL, Dias F, et al. Influence of peripheral whole-blood microRNA-7 and microRNA-221 high expression levels on the acquisition of castration-resistant prostate cancer: evidences from in vitro and in vivo studies. Tumour Biol, 2014. 35(7): 7105-13. Doi: http://dx.doi.org/10.1007/s13277-014-1918-9

76. Zhao A, Li G, Peoc'h M, et al. Serum miR-210 as a novel biomarker for molecular diagnosis of clear cell renal cell carcinoma. Exp Mol Pathol, 2013. 94(1): 115-20.
Doi: http://dx.doi.org/10.1016/j.yexmp.2012.10.005

77. Iwamoto H, Kanda Y, Sejima T, et al. Serum miR-210 as a potential biomarker of early clear cell renal cell carcinoma. Int J Oncol, 2014. 44(1): 53-8. Doi: http://dx.doi.org/10.3892/ijo.2013.2169

78. Chan SY and Loscalzo J. MicroRNA-210: a unique and pleiotropic hypoxamir. Cell Cycle, 2010. 9(6): 1072-83. Doi: http://dx.doi.org/10.4161/cc.9.6.11006

79. Hauser S, Wulfken LM, Holdenrieder S, et al. Analysis of serum microRNAs (miR-26a-2*, miR-191, miR-337-3p and miR-378) as potential biomarkers in renal cell carcinoma. Cancer Epidemiol, 2012. 36(4): 391-4. Doi: http://dx.doi.org/10.1016/j.canep.2012.04.001

80. Zhai Q, Zhou L, Zhao C, et al. Identification of miR-508-3p and miR-509-3p that are associated with cell invasion and migration and involved in the apoptosis of renal cell carcinoma. Biochem Biophys Res Commun, 2012. 419(4): 621-6. Doi: http://dx.doi.org/10.1016/j.bbrc.2012.02.060

81. von Brandenstein M, Pandarakalam JJ, Kroon L, et al. MicroRNA 15a, inversely correlated to PKCalpha, is a potential marker to differentiate between benign and malignant renal tumors in biopsy and urine samples. Am J Pathol, 2012. 180(5): 1787-97. Doi: http://dx.doi.org/10.1016/j.ajpath.2012.01.014

82. Komabayashi Y, Kishibe K, Nagato T, et al. Downregulation of miR-15a due to LMP1 promotes cell proliferation and predicts poor prognosis in nasal NK/T-cell lymphoma. Am J Hematol, 2014. 89(1): 25-33.
Doi: http://dx.doi.org/10.1002/ajh.23570

83. An J, Choi J, Shin BK, et al. Chromogenic in situ hybridization detection of chromosome 7 and 17 abnormalities in renal cell carcinomas and comparison to flow cytometric DNA ploidy patterns. Basic and Applied Pathology, 2008. 1(2): 66-71. Doi: http://dx.doi.org/10.1111/j.1755-9294.2008.00015.x

84. Chou A, Toon C, Pickett J, et al. von Hippel-Lindau syndrome. Front Horm Res, 2013. 41: 30-49. Doi: http://dx.doi.org/10.1159/000345668

85. Kaelin WG, Jr. The von Hippel-Lindau tumor suppressor gene and kidney cancer. Clin Cancer Res, 2004. 10(18 Pt 2): 6290S-5S. Doi: http://dx.doi.org/10.1158/1078-0432.CCR-sup-040025

86. Pugh CW and Ratcliffe PJ. The von Hippel-Lindau tumor suppressor, hypoxia-inducible factor-1 (HIF-1) degradation, and cancer pathogenesis. Semin Cancer Biol, 2003. 13(1): 83-9.
Doi: http://dx.doi.org/10.1016/S1044-579X(02)00103-7

87. Smaldone MC and Maranchie JK. Clinical implications of hypoxia inducible factor in renal cell carcinoma. Urol Oncol, 2009. 27(3): 238-45. Doi: http://dx.doi.org/10.1016/j.urolonc.2007.12.001

88. Loughlin KR. Hypoxia inducible factor (HIF): its central role in renal cell cancer targeted therapy. Urol Oncol, 2009. 27(3): 236-7. Doi: http://dx.doi.org/10.1016/j.urolonc.2008.08.006

89. Furniss D, Harnden P, Ali N, et al. Prognostic factors for renal cell carcinoma. Cancer Treat Rev, 2008. 34(5): 407-26. Doi: http://dx.doi.org/10.1016/j.ctrv.2007.12.008

90. Zhou L and Yang H. The von Hippel-Lindau tumor suppressor protein promotes c-Cbl-independent poly-ubiquitylation and degradation of the activated EGFR. PLoS One, 2011. 6(9): 16. Doi: http://dx.doi.org/10.1371/journal.pone.0023936

91. Sermeus A and Michiels C. Reciprocal influence of the p53 and the hypoxic pathways. Cell Death Dis, 2011. 26(2): e164. Doi: http://dx.doi.org/10.1038/cddis.2011.48

92. An WG, Kanekal M, Simon MC, et al. Stabilization of wild-type p53 by hypoxia-inducible factor 1alpha. Nature, 1998. 392(6674): 405-8. Doi: http://dx.doi.org/10.1038/32925

93. Miller TE, Ghoshal K, Ramaswamy B, et al. MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J Biol Chem, 2008. 283(44): 29897-903.
Doi: http://dx.doi.org/10.1074/jbc.M804612200

94. Teixeira AL, Gomes M and Medeiros R. EGFR signaling pathway and related-miRNAs in age-related diseases: the example of miR-221 and miR-222. Front Genet, 2012. 3:286.
Doi: http://dx.doi.org/10.3389/fgene.2012.00286.

95. Camps C, Saini HK, Mole DR, et al. Integrated analysis of microRNA and mRNA expression and association with HIF binding reveals the complexity of microRNA expression regulation under hypoxia. Mol Cancer, 2014. 13(28): 1476-4598. Doi: http://dx.doi.org/10.1186/1476-4598-13-28

96. Mohri T, Nakajima M, Fukami T, et al. Human CYP2E1 is regulated by miR-378. Biochem Pharmacol, 2010. 79(7): 1045-52. Doi: http://dx.doi.org/10.1016/j.bcp.2009.11.015

97. Kozakowski N, Soleiman A and Pammer J. BMI-1 expression is inversely correlated with the grading of renal clear cell carcinoma. Pathol Oncol Res, 2008. 14(1): 9-13.
Doi: http://dx.doi.org/10.1007/s12253-008-9006-3

98. Bhattacharya R, Nicoloso M, Arvizo R, et al. MiR-15a and MiR-16 control Bmi-1 expression in ovarian cancer. Cancer Res, 2009. 69(23): 9090-5. Doi: http://dx.doi.org/10.1158/0008-5472.CAN-09-2552

99. Redova M, Poprach A, Nekvindova J, et al. Circulating miR-378 and miR-451 in serum are potential biomarkers for renal cell carcinoma. J Transl Med, 2012. 10(55): 1479-5876.
Doi: http://dx.doi.org/10.1186/1479-5876-10-55

100. Katayama K, Noguchi K and Sugimoto Y. Regulations of P-Glycoprotein/ABCB1/MDR1 in Human Cancer Cells. New Journal of Science, 2014. 2014: 10.

101. Shang Y, Zhang Z, Liu Z, et al. miR-508-5p regulates multidrug resistance of gastric cancer by targeting ABCB1 and ZNRD1. Oncogene, 2014. 33(25): 3267-76. Doi: http://dx.doi.org/10.1038/onc.2013.297

102. Ambudkar SV, Kimchi-Sarfaty C, Sauna ZE, et al. P-glycoprotein: from genomics to mechanism. Oncogene, 2003. 22(47): 7468-85. Doi: http://dx.doi.org/10.1038/sj.onc.1206948